Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
class PositionalEncoding(nn.Module): | |
"""Sinusoidal positional encoding for non-recurrent neural networks. | |
Implementation based on "Attention Is All You Need" | |
Args: | |
channels (int): embedding size | |
dropout_p (float): dropout rate applied to the output. | |
max_len (int): maximum sequence length. | |
use_scale (bool): whether to use a learnable scaling coefficient. | |
""" | |
def __init__(self, channels, dropout_p=0.0, max_len=5000, use_scale=False): | |
super().__init__() | |
if channels % 2 != 0: | |
raise ValueError( | |
"Cannot use sin/cos positional encoding with " "odd channels (got channels={:d})".format(channels) | |
) | |
self.use_scale = use_scale | |
if use_scale: | |
self.scale = torch.nn.Parameter(torch.ones(1)) | |
pe = torch.zeros(max_len, channels) | |
position = torch.arange(0, max_len).unsqueeze(1) | |
div_term = torch.pow(10000, torch.arange(0, channels, 2).float() / channels) | |
pe[:, 0::2] = torch.sin(position.float() * div_term) | |
pe[:, 1::2] = torch.cos(position.float() * div_term) | |
pe = pe.unsqueeze(0).transpose(1, 2) | |
self.register_buffer("pe", pe) | |
if dropout_p > 0: | |
self.dropout = nn.Dropout(p=dropout_p) | |
self.channels = channels | |
def forward(self, x, mask=None, first_idx=None, last_idx=None): | |
""" | |
Shapes: | |
x: [B, C, T] | |
mask: [B, 1, T] | |
first_idx: int | |
last_idx: int | |
""" | |
x = x * math.sqrt(self.channels) | |
if first_idx is None: | |
if self.pe.size(2) < x.size(2): | |
raise RuntimeError( | |
f"Sequence is {x.size(2)} but PositionalEncoding is" | |
f" limited to {self.pe.size(2)}. See max_len argument." | |
) | |
if mask is not None: | |
pos_enc = self.pe[:, :, : x.size(2)] * mask | |
else: | |
pos_enc = self.pe[:, :, : x.size(2)] | |
if self.use_scale: | |
x = x + self.scale * pos_enc | |
else: | |
x = x + pos_enc | |
else: | |
if self.use_scale: | |
x = x + self.scale * self.pe[:, :, first_idx:last_idx] | |
else: | |
x = x + self.pe[:, :, first_idx:last_idx] | |
if hasattr(self, "dropout"): | |
x = self.dropout(x) | |
return x | |