Spaces:
Sleeping
Sleeping
import random | |
import torch | |
from torch.utils.data import Dataset | |
from TTS.encoder.utils.generic_utils import AugmentWAV | |
class EncoderDataset(Dataset): | |
def __init__( | |
self, | |
config, | |
ap, | |
meta_data, | |
voice_len=1.6, | |
num_classes_in_batch=64, | |
num_utter_per_class=10, | |
verbose=False, | |
augmentation_config=None, | |
use_torch_spec=None, | |
): | |
""" | |
Args: | |
ap (TTS.tts.utils.AudioProcessor): audio processor object. | |
meta_data (list): list of dataset instances. | |
seq_len (int): voice segment length in seconds. | |
verbose (bool): print diagnostic information. | |
""" | |
super().__init__() | |
self.config = config | |
self.items = meta_data | |
self.sample_rate = ap.sample_rate | |
self.seq_len = int(voice_len * self.sample_rate) | |
self.num_utter_per_class = num_utter_per_class | |
self.ap = ap | |
self.verbose = verbose | |
self.use_torch_spec = use_torch_spec | |
self.classes, self.items = self.__parse_items() | |
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} | |
# Data Augmentation | |
self.augmentator = None | |
self.gaussian_augmentation_config = None | |
if augmentation_config: | |
self.data_augmentation_p = augmentation_config["p"] | |
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config): | |
self.augmentator = AugmentWAV(ap, augmentation_config) | |
if "gaussian" in augmentation_config.keys(): | |
self.gaussian_augmentation_config = augmentation_config["gaussian"] | |
if self.verbose: | |
print("\n > DataLoader initialization") | |
print(f" | > Classes per Batch: {num_classes_in_batch}") | |
print(f" | > Number of instances : {len(self.items)}") | |
print(f" | > Sequence length: {self.seq_len}") | |
print(f" | > Num Classes: {len(self.classes)}") | |
print(f" | > Classes: {self.classes}") | |
def load_wav(self, filename): | |
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate) | |
return audio | |
def __parse_items(self): | |
class_to_utters = {} | |
for item in self.items: | |
path_ = item["audio_file"] | |
class_name = item[self.config.class_name_key] | |
if class_name in class_to_utters.keys(): | |
class_to_utters[class_name].append(path_) | |
else: | |
class_to_utters[class_name] = [ | |
path_, | |
] | |
# skip classes with number of samples >= self.num_utter_per_class | |
class_to_utters = {k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class} | |
classes = list(class_to_utters.keys()) | |
classes.sort() | |
new_items = [] | |
for item in self.items: | |
path_ = item["audio_file"] | |
class_name = item["emotion_name"] if self.config.model == "emotion_encoder" else item["speaker_name"] | |
# ignore filtered classes | |
if class_name not in classes: | |
continue | |
# ignore small audios | |
if self.load_wav(path_).shape[0] - self.seq_len <= 0: | |
continue | |
new_items.append({"wav_file_path": path_, "class_name": class_name}) | |
return classes, new_items | |
def __len__(self): | |
return len(self.items) | |
def get_num_classes(self): | |
return len(self.classes) | |
def get_class_list(self): | |
return self.classes | |
def set_classes(self, classes): | |
self.classes = classes | |
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)} | |
def get_map_classid_to_classname(self): | |
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items()) | |
def __getitem__(self, idx): | |
return self.items[idx] | |
def collate_fn(self, batch): | |
# get the batch class_ids | |
labels = [] | |
feats = [] | |
for item in batch: | |
utter_path = item["wav_file_path"] | |
class_name = item["class_name"] | |
# get classid | |
class_id = self.classname_to_classid[class_name] | |
# load wav file | |
wav = self.load_wav(utter_path) | |
offset = random.randint(0, wav.shape[0] - self.seq_len) | |
wav = wav[offset : offset + self.seq_len] | |
if self.augmentator is not None and self.data_augmentation_p: | |
if random.random() < self.data_augmentation_p: | |
wav = self.augmentator.apply_one(wav) | |
if not self.use_torch_spec: | |
mel = self.ap.melspectrogram(wav) | |
feats.append(torch.FloatTensor(mel)) | |
else: | |
feats.append(torch.FloatTensor(wav)) | |
labels.append(class_id) | |
feats = torch.stack(feats) | |
labels = torch.LongTensor(labels) | |
return feats, labels | |