Spaces:
Sleeping
Sleeping
import numpy as np | |
from torch import nn | |
class GBlock(nn.Module): | |
def __init__(self, in_channels, cond_channels, downsample_factor): | |
super().__init__() | |
self.in_channels = in_channels | |
self.cond_channels = cond_channels | |
self.downsample_factor = downsample_factor | |
self.start = nn.Sequential( | |
nn.AvgPool1d(downsample_factor, stride=downsample_factor), | |
nn.ReLU(), | |
nn.Conv1d(in_channels, in_channels * 2, kernel_size=3, padding=1), | |
) | |
self.lc_conv1d = nn.Conv1d(cond_channels, in_channels * 2, kernel_size=1) | |
self.end = nn.Sequential( | |
nn.ReLU(), nn.Conv1d(in_channels * 2, in_channels * 2, kernel_size=3, dilation=2, padding=2) | |
) | |
self.residual = nn.Sequential( | |
nn.Conv1d(in_channels, in_channels * 2, kernel_size=1), | |
nn.AvgPool1d(downsample_factor, stride=downsample_factor), | |
) | |
def forward(self, inputs, conditions): | |
outputs = self.start(inputs) + self.lc_conv1d(conditions) | |
outputs = self.end(outputs) | |
residual_outputs = self.residual(inputs) | |
outputs = outputs + residual_outputs | |
return outputs | |
class DBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, downsample_factor): | |
super().__init__() | |
self.in_channels = in_channels | |
self.downsample_factor = downsample_factor | |
self.out_channels = out_channels | |
self.donwsample_layer = nn.AvgPool1d(downsample_factor, stride=downsample_factor) | |
self.layers = nn.Sequential( | |
nn.ReLU(), | |
nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.Conv1d(out_channels, out_channels, kernel_size=3, dilation=2, padding=2), | |
) | |
self.residual = nn.Sequential( | |
nn.Conv1d(in_channels, out_channels, kernel_size=1), | |
) | |
def forward(self, inputs): | |
if self.downsample_factor > 1: | |
outputs = self.layers(self.donwsample_layer(inputs)) + self.donwsample_layer(self.residual(inputs)) | |
else: | |
outputs = self.layers(inputs) + self.residual(inputs) | |
return outputs | |
class ConditionalDiscriminator(nn.Module): | |
def __init__(self, in_channels, cond_channels, downsample_factors=(2, 2, 2), out_channels=(128, 256)): | |
super().__init__() | |
assert len(downsample_factors) == len(out_channels) + 1 | |
self.in_channels = in_channels | |
self.cond_channels = cond_channels | |
self.downsample_factors = downsample_factors | |
self.out_channels = out_channels | |
self.pre_cond_layers = nn.ModuleList() | |
self.post_cond_layers = nn.ModuleList() | |
# layers before condition features | |
self.pre_cond_layers += [DBlock(in_channels, 64, 1)] | |
in_channels = 64 | |
for i, channel in enumerate(out_channels): | |
self.pre_cond_layers.append(DBlock(in_channels, channel, downsample_factors[i])) | |
in_channels = channel | |
# condition block | |
self.cond_block = GBlock(in_channels, cond_channels, downsample_factors[-1]) | |
# layers after condition block | |
self.post_cond_layers += [ | |
DBlock(in_channels * 2, in_channels * 2, 1), | |
DBlock(in_channels * 2, in_channels * 2, 1), | |
nn.AdaptiveAvgPool1d(1), | |
nn.Conv1d(in_channels * 2, 1, kernel_size=1), | |
] | |
def forward(self, inputs, conditions): | |
batch_size = inputs.size()[0] | |
outputs = inputs.view(batch_size, self.in_channels, -1) | |
for layer in self.pre_cond_layers: | |
outputs = layer(outputs) | |
outputs = self.cond_block(outputs, conditions) | |
for layer in self.post_cond_layers: | |
outputs = layer(outputs) | |
return outputs | |
class UnconditionalDiscriminator(nn.Module): | |
def __init__(self, in_channels, base_channels=64, downsample_factors=(8, 4), out_channels=(128, 256)): | |
super().__init__() | |
self.downsample_factors = downsample_factors | |
self.in_channels = in_channels | |
self.downsample_factors = downsample_factors | |
self.out_channels = out_channels | |
self.layers = nn.ModuleList() | |
self.layers += [DBlock(self.in_channels, base_channels, 1)] | |
in_channels = base_channels | |
for i, factor in enumerate(downsample_factors): | |
self.layers.append(DBlock(in_channels, out_channels[i], factor)) | |
in_channels *= 2 | |
self.layers += [ | |
DBlock(in_channels, in_channels, 1), | |
DBlock(in_channels, in_channels, 1), | |
nn.AdaptiveAvgPool1d(1), | |
nn.Conv1d(in_channels, 1, kernel_size=1), | |
] | |
def forward(self, inputs): | |
batch_size = inputs.size()[0] | |
outputs = inputs.view(batch_size, self.in_channels, -1) | |
for layer in self.layers: | |
outputs = layer(outputs) | |
return outputs | |
class RandomWindowDiscriminator(nn.Module): | |
"""Random Window Discriminator as described in | |
http://arxiv.org/abs/1909.11646""" | |
def __init__( | |
self, | |
cond_channels, | |
hop_length, | |
uncond_disc_donwsample_factors=(8, 4), | |
cond_disc_downsample_factors=((8, 4, 2, 2, 2), (8, 4, 2, 2), (8, 4, 2), (8, 4), (4, 2, 2)), | |
cond_disc_out_channels=((128, 128, 256, 256), (128, 256, 256), (128, 256), (256,), (128, 256)), | |
window_sizes=(512, 1024, 2048, 4096, 8192), | |
): | |
super().__init__() | |
self.cond_channels = cond_channels | |
self.window_sizes = window_sizes | |
self.hop_length = hop_length | |
self.base_window_size = self.hop_length * 2 | |
self.ks = [ws // self.base_window_size for ws in window_sizes] | |
# check arguments | |
assert len(cond_disc_downsample_factors) == len(cond_disc_out_channels) == len(window_sizes) | |
for ws in window_sizes: | |
assert ws % hop_length == 0 | |
for idx, cf in enumerate(cond_disc_downsample_factors): | |
assert np.prod(cf) == hop_length // self.ks[idx] | |
# define layers | |
self.unconditional_discriminators = nn.ModuleList([]) | |
for k in self.ks: | |
layer = UnconditionalDiscriminator( | |
in_channels=k, base_channels=64, downsample_factors=uncond_disc_donwsample_factors | |
) | |
self.unconditional_discriminators.append(layer) | |
self.conditional_discriminators = nn.ModuleList([]) | |
for idx, k in enumerate(self.ks): | |
layer = ConditionalDiscriminator( | |
in_channels=k, | |
cond_channels=cond_channels, | |
downsample_factors=cond_disc_downsample_factors[idx], | |
out_channels=cond_disc_out_channels[idx], | |
) | |
self.conditional_discriminators.append(layer) | |
def forward(self, x, c): | |
scores = [] | |
feats = [] | |
# unconditional pass | |
for window_size, layer in zip(self.window_sizes, self.unconditional_discriminators): | |
index = np.random.randint(x.shape[-1] - window_size) | |
score = layer(x[:, :, index : index + window_size]) | |
scores.append(score) | |
# conditional pass | |
for window_size, layer in zip(self.window_sizes, self.conditional_discriminators): | |
frame_size = window_size // self.hop_length | |
lc_index = np.random.randint(c.shape[-1] - frame_size) | |
sample_index = lc_index * self.hop_length | |
x_sub = x[:, :, sample_index : (lc_index + frame_size) * self.hop_length] | |
c_sub = c[:, :, lc_index : lc_index + frame_size] | |
score = layer(x_sub, c_sub) | |
scores.append(score) | |
return scores, feats | |