Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch import nn | |
from torch.nn.utils.parametrize import remove_parametrizations | |
from TTS.vocoder.layers.parallel_wavegan import ResidualBlock | |
class ParallelWaveganDiscriminator(nn.Module): | |
"""PWGAN discriminator as in https://arxiv.org/abs/1910.11480. | |
It classifies each audio window real/fake and returns a sequence | |
of predictions. | |
It is a stack of convolutional blocks with dilation. | |
""" | |
# pylint: disable=dangerous-default-value | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
kernel_size=3, | |
num_layers=10, | |
conv_channels=64, | |
dilation_factor=1, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.2}, | |
bias=True, | |
): | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0, " [!] does not support even number kernel size." | |
assert dilation_factor > 0, " [!] dilation factor must be > 0." | |
self.conv_layers = nn.ModuleList() | |
conv_in_channels = in_channels | |
for i in range(num_layers - 1): | |
if i == 0: | |
dilation = 1 | |
else: | |
dilation = i if dilation_factor == 1 else dilation_factor**i | |
conv_in_channels = conv_channels | |
padding = (kernel_size - 1) // 2 * dilation | |
conv_layer = [ | |
nn.Conv1d( | |
conv_in_channels, | |
conv_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
), | |
getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), | |
] | |
self.conv_layers += conv_layer | |
padding = (kernel_size - 1) // 2 | |
last_conv_layer = nn.Conv1d(conv_in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias) | |
self.conv_layers += [last_conv_layer] | |
self.apply_weight_norm() | |
def forward(self, x): | |
""" | |
x : (B, 1, T). | |
Returns: | |
Tensor: (B, 1, T) | |
""" | |
for f in self.conv_layers: | |
x = f(x) | |
return x | |
def apply_weight_norm(self): | |
def _apply_weight_norm(m): | |
if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): | |
torch.nn.utils.parametrizations.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def remove_weight_norm(self): | |
def _remove_weight_norm(m): | |
try: | |
# print(f"Weight norm is removed from {m}.") | |
remove_parametrizations(m, "weight") | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
class ResidualParallelWaveganDiscriminator(nn.Module): | |
# pylint: disable=dangerous-default-value | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
kernel_size=3, | |
num_layers=30, | |
stacks=3, | |
res_channels=64, | |
gate_channels=128, | |
skip_channels=64, | |
dropout=0.0, | |
bias=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.2}, | |
): | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.num_layers = num_layers | |
self.stacks = stacks | |
self.kernel_size = kernel_size | |
self.res_factor = math.sqrt(1.0 / num_layers) | |
# check the number of num_layers and stacks | |
assert num_layers % stacks == 0 | |
layers_per_stack = num_layers // stacks | |
# define first convolution | |
self.first_conv = nn.Sequential( | |
nn.Conv1d(in_channels, res_channels, kernel_size=1, padding=0, dilation=1, bias=True), | |
getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), | |
) | |
# define residual blocks | |
self.conv_layers = nn.ModuleList() | |
for layer in range(num_layers): | |
dilation = 2 ** (layer % layers_per_stack) | |
conv = ResidualBlock( | |
kernel_size=kernel_size, | |
res_channels=res_channels, | |
gate_channels=gate_channels, | |
skip_channels=skip_channels, | |
aux_channels=-1, | |
dilation=dilation, | |
dropout=dropout, | |
bias=bias, | |
use_causal_conv=False, | |
) | |
self.conv_layers += [conv] | |
# define output layers | |
self.last_conv_layers = nn.ModuleList( | |
[ | |
getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), | |
nn.Conv1d(skip_channels, skip_channels, kernel_size=1, padding=0, dilation=1, bias=True), | |
getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params), | |
nn.Conv1d(skip_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=True), | |
] | |
) | |
# apply weight norm | |
self.apply_weight_norm() | |
def forward(self, x): | |
""" | |
x: (B, 1, T). | |
""" | |
x = self.first_conv(x) | |
skips = 0 | |
for f in self.conv_layers: | |
x, h = f(x, None) | |
skips += h | |
skips *= self.res_factor | |
# apply final layers | |
x = skips | |
for f in self.last_conv_layers: | |
x = f(x) | |
return x | |
def apply_weight_norm(self): | |
def _apply_weight_norm(m): | |
if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)): | |
torch.nn.utils.parametrizations.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def remove_weight_norm(self): | |
def _remove_weight_norm(m): | |
try: | |
print(f"Weight norm is removed from {m}.") | |
remove_parametrizations(m, "weight") | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |