Spaces:
Sleeping
Sleeping
import torch | |
from packaging.version import Version | |
from torch import nn | |
from torch.nn import functional as F | |
from TTS.tts.layers.generic.wavenet import WN | |
from ..generic.normalization import LayerNorm | |
class ResidualConv1dLayerNormBlock(nn.Module): | |
"""Conv1d with Layer Normalization and residual connection as in GlowTTS paper. | |
https://arxiv.org/pdf/1811.00002.pdf | |
:: | |
x |-> conv1d -> layer_norm -> relu -> dropout -> + -> o | |
|---------------> conv1d_1x1 ------------------| | |
Args: | |
in_channels (int): number of input tensor channels. | |
hidden_channels (int): number of inner layer channels. | |
out_channels (int): number of output tensor channels. | |
kernel_size (int): kernel size of conv1d filter. | |
num_layers (int): number of blocks. | |
dropout_p (float): dropout rate for each block. | |
""" | |
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, num_layers, dropout_p): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.num_layers = num_layers | |
self.dropout_p = dropout_p | |
assert num_layers > 1, " [!] number of layers should be > 0." | |
assert kernel_size % 2 == 1, " [!] kernel size should be odd number." | |
self.conv_layers = nn.ModuleList() | |
self.norm_layers = nn.ModuleList() | |
for idx in range(num_layers): | |
self.conv_layers.append( | |
nn.Conv1d( | |
in_channels if idx == 0 else hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2 | |
) | |
) | |
self.norm_layers.append(LayerNorm(hidden_channels)) | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
""" | |
x_res = x | |
for i in range(self.num_layers): | |
x = self.conv_layers[i](x * x_mask) | |
x = self.norm_layers[i](x * x_mask) | |
x = F.dropout(F.relu(x), self.dropout_p, training=self.training) | |
x = x_res + self.proj(x) | |
return x * x_mask | |
class InvConvNear(nn.Module): | |
"""Invertible Convolution with input splitting as in GlowTTS paper. | |
https://arxiv.org/pdf/1811.00002.pdf | |
Args: | |
channels (int): input and output channels. | |
num_splits (int): number of splits, also H and W of conv layer. | |
no_jacobian (bool): enable/disable jacobian computations. | |
Note: | |
Split the input into groups of size self.num_splits and | |
perform 1x1 convolution separately. Cast 1x1 conv operation | |
to 2d by reshaping the input for efficiency. | |
""" | |
def __init__(self, channels, num_splits=4, no_jacobian=False, **kwargs): # pylint: disable=unused-argument | |
super().__init__() | |
assert num_splits % 2 == 0 | |
self.channels = channels | |
self.num_splits = num_splits | |
self.no_jacobian = no_jacobian | |
self.weight_inv = None | |
if Version(torch.__version__) < Version("1.9"): | |
w_init = torch.qr(torch.FloatTensor(self.num_splits, self.num_splits).normal_())[0] | |
else: | |
w_init = torch.linalg.qr(torch.FloatTensor(self.num_splits, self.num_splits).normal_(), "complete")[0] | |
if torch.det(w_init) < 0: | |
w_init[:, 0] = -1 * w_init[:, 0] | |
self.weight = nn.Parameter(w_init) | |
def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
""" | |
b, c, t = x.size() | |
assert c % self.num_splits == 0 | |
if x_mask is None: | |
x_mask = 1 | |
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t | |
else: | |
x_len = torch.sum(x_mask, [1, 2]) | |
x = x.view(b, 2, c // self.num_splits, self.num_splits // 2, t) | |
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.num_splits, c // self.num_splits, t) | |
if reverse: | |
if self.weight_inv is not None: | |
weight = self.weight_inv | |
else: | |
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) | |
logdet = None | |
else: | |
weight = self.weight | |
if self.no_jacobian: | |
logdet = 0 | |
else: | |
logdet = torch.logdet(self.weight) * (c / self.num_splits) * x_len # [b] | |
weight = weight.view(self.num_splits, self.num_splits, 1, 1) | |
z = F.conv2d(x, weight) | |
z = z.view(b, 2, self.num_splits // 2, c // self.num_splits, t) | |
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask | |
return z, logdet | |
def store_inverse(self): | |
weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) | |
self.weight_inv = nn.Parameter(weight_inv, requires_grad=False) | |
class CouplingBlock(nn.Module): | |
"""Glow Affine Coupling block as in GlowTTS paper. | |
https://arxiv.org/pdf/1811.00002.pdf | |
:: | |
x --> x0 -> conv1d -> wavenet -> conv1d --> t, s -> concat(s*x1 + t, x0) -> o | |
'-> x1 - - - - - - - - - - - - - - - - - - - - - - - - - ^ | |
Args: | |
in_channels (int): number of input tensor channels. | |
hidden_channels (int): number of hidden channels. | |
kernel_size (int): WaveNet filter kernel size. | |
dilation_rate (int): rate to increase dilation by each layer in a decoder block. | |
num_layers (int): number of WaveNet layers. | |
c_in_channels (int): number of conditioning input channels. | |
dropout_p (int): wavenet dropout rate. | |
sigmoid_scale (bool): enable/disable sigmoid scaling for output scale. | |
Note: | |
It does not use the conditional inputs differently from WaveGlow. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
num_layers, | |
c_in_channels=0, | |
dropout_p=0, | |
sigmoid_scale=False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.num_layers = num_layers | |
self.c_in_channels = c_in_channels | |
self.dropout_p = dropout_p | |
self.sigmoid_scale = sigmoid_scale | |
# input layer | |
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) | |
start = torch.nn.utils.parametrizations.weight_norm(start) | |
self.start = start | |
# output layer | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(hidden_channels, in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
# coupling layers | |
self.wn = WN(hidden_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels, dropout_p) | |
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): # pylint: disable=unused-argument | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_mask: :math:`[B, 1, T]` | |
- g: :math:`[B, C, 1]` | |
""" | |
if x_mask is None: | |
x_mask = 1 | |
x_0, x_1 = x[:, : self.in_channels // 2], x[:, self.in_channels // 2 :] | |
x = self.start(x_0) * x_mask | |
x = self.wn(x, x_mask, g) | |
out = self.end(x) | |
z_0 = x_0 | |
t = out[:, : self.in_channels // 2, :] | |
s = out[:, self.in_channels // 2 :, :] | |
if self.sigmoid_scale: | |
s = torch.log(1e-6 + torch.sigmoid(s + 2)) | |
if reverse: | |
z_1 = (x_1 - t) * torch.exp(-s) * x_mask | |
logdet = None | |
else: | |
z_1 = (t + torch.exp(s) * x_1) * x_mask | |
logdet = torch.sum(s * x_mask, [1, 2]) | |
z = torch.cat([z_0, z_1], 1) | |
return z, logdet | |
def store_inverse(self): | |
self.wn.remove_weight_norm() | |