Spaces:
Sleeping
Sleeping
from typing import Callable, Tuple | |
import torch | |
import torch.nn as nn # pylint: disable=consider-using-from-import | |
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor | |
from TTS.tts.utils.helpers import average_over_durations | |
class EnergyAdaptor(nn.Module): # pylint: disable=abstract-method | |
"""Variance Adaptor with an added 1D conv layer. Used to | |
get energy embeddings. | |
Args: | |
channels_in (int): Number of in channels for conv layers. | |
channels_out (int): Number of out channels. | |
kernel_size (int): Size the kernel for the conv layers. | |
dropout (float): Probability of dropout. | |
lrelu_slope (float): Slope for the leaky relu. | |
emb_kernel_size (int): Size the kernel for the pitch embedding. | |
Inputs: inputs, mask | |
- **inputs** (batch, time1, dim): Tensor containing input vector | |
- **target** (batch, 1, time2): Tensor containing the energy target | |
- **dr** (batch, time1): Tensor containing aligner durations vector | |
- **mask** (batch, time1): Tensor containing indices to be masked | |
Returns: | |
- **energy prediction** (batch, 1, time1): Tensor produced by energy predictor | |
- **energy embedding** (batch, channels, time1): Tensor produced energy adaptor | |
- **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations | |
""" | |
def __init__( | |
self, | |
channels_in: int, | |
channels_hidden: int, | |
channels_out: int, | |
kernel_size: int, | |
dropout: float, | |
lrelu_slope: float, | |
emb_kernel_size: int, | |
): | |
super().__init__() | |
self.energy_predictor = VariancePredictor( | |
channels_in=channels_in, | |
channels=channels_hidden, | |
channels_out=channels_out, | |
kernel_size=kernel_size, | |
p_dropout=dropout, | |
lrelu_slope=lrelu_slope, | |
) | |
self.energy_emb = nn.Conv1d( | |
1, | |
channels_hidden, | |
kernel_size=emb_kernel_size, | |
padding=int((emb_kernel_size - 1) / 2), | |
) | |
def get_energy_embedding_train( | |
self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Shapes: | |
x: :math: `[B, T_src, C]` | |
target: :math: `[B, 1, T_max2]` | |
dr: :math: `[B, T_src]` | |
mask: :math: `[B, T_src]` | |
""" | |
energy_pred = self.energy_predictor(x, mask) | |
energy_pred.unsqueeze_(1) | |
avg_energy_target = average_over_durations(target, dr) | |
energy_emb = self.energy_emb(avg_energy_target) | |
return energy_pred, avg_energy_target, energy_emb | |
def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor: | |
energy_pred = self.energy_predictor(x, mask) | |
energy_pred.unsqueeze_(1) | |
if energy_transform is not None: | |
energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std) | |
energy_emb_pred = self.energy_emb(energy_pred) | |
return energy_emb_pred, energy_pred | |