Spaces:
Sleeping
Sleeping
from torch import nn | |
class MDNBlock(nn.Module): | |
"""Mixture of Density Network implementation | |
https://arxiv.org/pdf/2003.01950.pdf | |
""" | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.out_channels = out_channels | |
self.conv1 = nn.Conv1d(in_channels, in_channels, 1) | |
self.norm = nn.LayerNorm(in_channels) | |
self.relu = nn.ReLU() | |
self.dropout = nn.Dropout(0.1) | |
self.conv2 = nn.Conv1d(in_channels, out_channels, 1) | |
def forward(self, x): | |
o = self.conv1(x) | |
o = o.transpose(1, 2) | |
o = self.norm(o) | |
o = o.transpose(1, 2) | |
o = self.relu(o) | |
o = self.dropout(o) | |
mu_sigma = self.conv2(o) | |
# TODO: check this sigmoid | |
# mu = torch.sigmoid(mu_sigma[:, :self.out_channels//2, :]) | |
mu = mu_sigma[:, : self.out_channels // 2, :] | |
log_sigma = mu_sigma[:, self.out_channels // 2 :, :] | |
return mu, log_sigma | |