Spaces:
Runtime error
Runtime error
Update infer/worldmodel.py
Browse files- infer/worldmodel.py +79 -79
infer/worldmodel.py
CHANGED
|
@@ -1,79 +1,79 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
|
| 4 |
-
import os, sys, torch, time
|
| 5 |
-
import numpy as np
|
| 6 |
-
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
| 7 |
-
import torch
|
| 8 |
-
print(torch.__version__)
|
| 9 |
-
print(torch.version.cuda)
|
| 10 |
-
|
| 11 |
-
# set these before import RWKV
|
| 12 |
-
# os.environ['RWKV_JIT_ON'] = '1'
|
| 13 |
-
# os.environ["RWKV_CUDA_ON"] = '1' # '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries
|
| 14 |
-
from infer.rwkv.model import RWKV # pip install rwkv
|
| 15 |
-
from infer.rwkv.utils import PIPELINE, PIPELINE_ARGS
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
from world.world_encoder import WorldEncoder
|
| 19 |
-
|
| 20 |
-
class Worldinfer():
|
| 21 |
-
def __init__(self, model_path, encoder_type, encoder_path, strategy='cpu
|
| 22 |
-
|
| 23 |
-
ss = strategy.split(' ')
|
| 24 |
-
DEVICE = ss[0]
|
| 25 |
-
if ss[1] == 'fp16':
|
| 26 |
-
self.DTYPE = torch.half
|
| 27 |
-
elif ss[1] == 'fp32':
|
| 28 |
-
self.DTYPE = torch.float32
|
| 29 |
-
elif ss[1] == 'bf16':
|
| 30 |
-
self.DTYPE = torch.bfloat16
|
| 31 |
-
else:
|
| 32 |
-
assert False, "currently rwkv7 strategy must be: cuda/cpu fp16/fp32/bf16"
|
| 33 |
-
|
| 34 |
-
self.model_weight = torch.load(model_path + '.pth', map_location=DEVICE)
|
| 35 |
-
modality_dict = {}
|
| 36 |
-
for key, value in self.model_weight.items():
|
| 37 |
-
if 'emb.weight' in key:
|
| 38 |
-
_, n_embd = value.shape
|
| 39 |
-
if 'modality' in key:
|
| 40 |
-
k = key.replace('modality.world_encoder.', '')
|
| 41 |
-
modality_dict[k] = value
|
| 42 |
-
model = RWKV(model=self.model_weight, strategy=strategy)
|
| 43 |
-
self.pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
| 44 |
-
|
| 45 |
-
if args==None:
|
| 46 |
-
self.args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.0, top_k=0, # top_k = 0 then ignore
|
| 47 |
-
alpha_frequency = 0.0,
|
| 48 |
-
alpha_presence = 0.0,
|
| 49 |
-
token_ban = [0], # ban the generation of some tokens
|
| 50 |
-
token_stop = [24], # stop generation whenever you see any token here
|
| 51 |
-
chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)
|
| 52 |
-
else:
|
| 53 |
-
self.args=args
|
| 54 |
-
print('RWKV finish!!!')
|
| 55 |
-
|
| 56 |
-
config = {
|
| 57 |
-
'encoder_type': encoder_type,
|
| 58 |
-
'encoder_path': encoder_path,
|
| 59 |
-
'project_dim' : n_embd
|
| 60 |
-
}
|
| 61 |
-
self.modality = WorldEncoder(**config).to(DEVICE, torch.bfloat16)
|
| 62 |
-
self.modality.load_checkpoint(modality_dict)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def generate(self, text, modality='none', state=None):
|
| 66 |
-
if isinstance(modality, str):
|
| 67 |
-
y=None
|
| 68 |
-
else:
|
| 69 |
-
y = self.modality(modality).to(self.DTYPE)
|
| 70 |
-
result, state = self.pipeline.generate(text, token_count=500, args=self.args, callback=None, state=state, sign=y)
|
| 71 |
-
return result, state
|
| 72 |
-
|
| 73 |
-
# def prefill(self, text, modality='none', state=None):
|
| 74 |
-
# if isinstance(modality, str):
|
| 75 |
-
# y=None
|
| 76 |
-
# else:
|
| 77 |
-
# y = self.modality(modality).to(self.DTYPE)
|
| 78 |
-
# result, state = self.pipeline.forward(text, token_count=500, args=self.args, callback=None, state=state, sign=y)
|
| 79 |
-
# return result, state
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
import os, sys, torch, time
|
| 5 |
+
import numpy as np
|
| 6 |
+
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
| 7 |
+
import torch
|
| 8 |
+
print(torch.__version__)
|
| 9 |
+
print(torch.version.cuda)
|
| 10 |
+
|
| 11 |
+
# set these before import RWKV
|
| 12 |
+
# os.environ['RWKV_JIT_ON'] = '1'
|
| 13 |
+
# os.environ["RWKV_CUDA_ON"] = '1' # '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries
|
| 14 |
+
from infer.rwkv.model import RWKV # pip install rwkv
|
| 15 |
+
from infer.rwkv.utils import PIPELINE, PIPELINE_ARGS
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from world.world_encoder import WorldEncoder
|
| 19 |
+
|
| 20 |
+
class Worldinfer():
|
| 21 |
+
def __init__(self, model_path, encoder_type, encoder_path, strategy='cpu fp16', args=None):
|
| 22 |
+
|
| 23 |
+
ss = strategy.split(' ')
|
| 24 |
+
DEVICE = ss[0]
|
| 25 |
+
if ss[1] == 'fp16':
|
| 26 |
+
self.DTYPE = torch.half
|
| 27 |
+
elif ss[1] == 'fp32':
|
| 28 |
+
self.DTYPE = torch.float32
|
| 29 |
+
elif ss[1] == 'bf16':
|
| 30 |
+
self.DTYPE = torch.bfloat16
|
| 31 |
+
else:
|
| 32 |
+
assert False, "currently rwkv7 strategy must be: cuda/cpu fp16/fp32/bf16"
|
| 33 |
+
|
| 34 |
+
self.model_weight = torch.load(model_path + '.pth', map_location=DEVICE)
|
| 35 |
+
modality_dict = {}
|
| 36 |
+
for key, value in self.model_weight.items():
|
| 37 |
+
if 'emb.weight' in key:
|
| 38 |
+
_, n_embd = value.shape
|
| 39 |
+
if 'modality' in key:
|
| 40 |
+
k = key.replace('modality.world_encoder.', '')
|
| 41 |
+
modality_dict[k] = value
|
| 42 |
+
model = RWKV(model=self.model_weight, strategy=strategy)
|
| 43 |
+
self.pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
| 44 |
+
|
| 45 |
+
if args==None:
|
| 46 |
+
self.args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.0, top_k=0, # top_k = 0 then ignore
|
| 47 |
+
alpha_frequency = 0.0,
|
| 48 |
+
alpha_presence = 0.0,
|
| 49 |
+
token_ban = [0], # ban the generation of some tokens
|
| 50 |
+
token_stop = [24], # stop generation whenever you see any token here
|
| 51 |
+
chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)
|
| 52 |
+
else:
|
| 53 |
+
self.args=args
|
| 54 |
+
print('RWKV finish!!!')
|
| 55 |
+
|
| 56 |
+
config = {
|
| 57 |
+
'encoder_type': encoder_type,
|
| 58 |
+
'encoder_path': encoder_path,
|
| 59 |
+
'project_dim' : n_embd
|
| 60 |
+
}
|
| 61 |
+
self.modality = WorldEncoder(**config).to(DEVICE, torch.bfloat16)
|
| 62 |
+
self.modality.load_checkpoint(modality_dict)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def generate(self, text, modality='none', state=None):
|
| 66 |
+
if isinstance(modality, str):
|
| 67 |
+
y=None
|
| 68 |
+
else:
|
| 69 |
+
y = self.modality(modality).to(self.DTYPE)
|
| 70 |
+
result, state = self.pipeline.generate(text, token_count=500, args=self.args, callback=None, state=state, sign=y)
|
| 71 |
+
return result, state
|
| 72 |
+
|
| 73 |
+
# def prefill(self, text, modality='none', state=None):
|
| 74 |
+
# if isinstance(modality, str):
|
| 75 |
+
# y=None
|
| 76 |
+
# else:
|
| 77 |
+
# y = self.modality(modality).to(self.DTYPE)
|
| 78 |
+
# result, state = self.pipeline.forward(text, token_count=500, args=self.args, callback=None, state=state, sign=y)
|
| 79 |
+
# return result, state
|