meta-ai-seo / app.py
cyberandy's picture
Update app.py
9793188 verified
raw
history blame
7.57 kB
import streamlit as st
from meta_ai_api import MetaAI
from urllib.parse import urlparse
import pandas as pd
import plotly.express as px
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import nltk
import json
# Initialize Meta AI API
ai = MetaAI()
# Page config
st.set_page_config(
page_title="Meta AI Query Analysis - a Free SEO Tool by WordLift",
page_icon="img/fav-ico.png",
layout="centered",
initial_sidebar_state="collapsed",
menu_items={
'Get Help': 'https://wordlift.io/book-a-demo/',
'About': "# This is a demo app for Meta AI SEO Optimization"
}
)
# Sidebar
st.sidebar.image("img/logo-wordlift.png")
def local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
local_css("style.css")
def fetch_response(query):
response = ai.prompt(message=query)
return response
def display_sources(sources):
if sources:
for source in sources:
# Parse the domain from the URL
domain = urlparse(source['link']).netloc
# Format and display the domain and title
st.markdown(f"- **{domain}**: [{source['title']}]({source['link']})", unsafe_allow_html=True)
else:
st.write("No sources available.")
# ---------------------------------------------------------------------------- #
# Sentiment Analysis Function
# ---------------------------------------------------------------------------- #
# Download the VADER lexicon for sentiment analysis
nltk.download('vader_lexicon')
# Initialize the Sentiment Intensity Analyzer
sid = SentimentIntensityAnalyzer()
def sentiment_analysis(text):
# Split the text into sentences
sentences = [sentence.strip() for sentence in text.split('.') if sentence]
# Create a DataFrame to hold the content and sentiment scores
df = pd.DataFrame(sentences, columns=['content'])
# Calculate sentiment scores for each sentence
df['sentiment_scores'] = df['content'].apply(lambda x: sid.polarity_scores(x))
# Split sentiment_scores into separate columns
df = pd.concat([df.drop(['sentiment_scores'], axis=1), df['sentiment_scores'].apply(pd.Series)], axis=1)
# Determine the dominant sentiment and its confidence
df['dominant_sentiment'] = df[['neg', 'neu', 'pos']].idxmax(axis=1)
df['confidence'] = df[['neg', 'neu', 'pos']].max(axis=1)
return df
# ---------------------------------------------------------------------------- #
# Advanced Analysis
# ---------------------------------------------------------------------------- #
def fetch_advanced_analysis(query, msg):
analysis_prompt = f"""
Analyze the user's request: '{query}', and the response: '{msg}'.
Based on this analysis, generate a detailed JSON response including:
1. The user's intent,
2. Up to four follow-up questions,
3. The main entities mentioned in the response.
Example of expected JSON format:
{{
"user_intent": "Identify the effects of climate change on polar bears",
"follow_up_questions": [
"What are the primary threats to polar bears today?",
"How does the melting ice affect their habitat?",
"What conservation efforts are in place for polar bears?",
"How can individuals contribute to these efforts?"
],
"entities": {{
"animal": ["polar bears"],
"issue": ["climate change"],
"actions": ["conservation efforts"]
}}
}}
"""
# Assume ai is an initialized MetaAI instance that can send prompts to the AI service
advanced_response = ai.prompt(message=analysis_prompt)
return advanced_response
def parse_analysis(analysis_message):
try:
start = analysis_message.find('{')
end = analysis_message.rfind('}') + 1 # Find the last '}' and include it
if start != -1 and end != -1:
json_str = analysis_message[start:end]
print("Debug JSON String:", json_str) # Continue to use this for debugging
analysis_data = json.loads(json_str)
return analysis_data
else:
return {"error": "Valid JSON data not found in the response"}
except json.JSONDecodeError as e:
return {"error": "Failed to decode JSON", "details": str(e)}
# ---------------------------------------------------------------------------- #
# Main Function
# ---------------------------------------------------------------------------- #
def main():
# Path to the image
image_path = 'img/meta-ai-logo.png' # Replace with your image's filename and extension
# Create two columns
col1, col2 = st.columns([1, 2]) # Adjust the ratio as needed for your layout
# Use the first column to display the image
with col1:
st.image(image_path, width=60)
# Use the second column to display the title and other content
with col2:
st.title("Meta AI SEO Tool")
# User input
user_query = st.text_area("Enter your query:", height=150, key="query_overview")
submit_button = st.button("Analyze Query", key="submit_overview")
# Create tabs
tab1, tab2, tab3 = st.tabs(["Overview", "Analysis", "Sentiment"])
# Tab 1: Overview - Showing the initial response and sources
with tab1:
if submit_button and user_query:
response = fetch_response(user_query)
msg = response.get('message', 'No response message.')
st.write(msg)
with st.expander("Show Sources"):
display_sources(response.get('sources', []))
# Tab 2: Analysis - Showing the result of the advanced analysis
with tab2:
# In case you need inputs here as well, ensure they have unique keys
if 'submit_overview' in st.session_state and st.session_state.submit_overview:
advanced_response = fetch_advanced_analysis(st.session_state.query_overview, msg)
advanced_msg = advanced_response.get('message', 'No advanced analysis available.')
analysis_data = parse_analysis(advanced_msg)
if "error" not in analysis_data:
st.write("#### User Intent:", analysis_data['user_intent'])
st.divider() # 👈 An horizontal rule
st.write("### Follow-up Questions:")
for question in analysis_data['follow_up_questions']:
st.write("- " + question)
st.divider()
st.write("#### Identified Concepts:")
for entity_type, entities in analysis_data['entities'].items():
st.write(f"**{entity_type.capitalize()}**: {', '.join(entities)}")
st.divider()
# Tab 3: Sentiment - Displaying sentiment analysis of the response
with tab3:
if 'submit_overview' in st.session_state and st.session_state.submit_overview:
df_sentiment = sentiment_analysis(msg)
fig = px.scatter(df_sentiment, y='dominant_sentiment', color='dominant_sentiment', size='confidence',
hover_data=['content'],
color_discrete_map={"neg": "firebrick", "neu": "navajowhite", "pos": "darkgreen"},
labels={'dominant_sentiment': 'Sentiment'},
title='Sentiment Analysis of the Response')
fig.update_layout(width=800, height=300)
st.plotly_chart(fig)
if __name__ == "__main__":
main()