Spaces:
Runtime error
Runtime error
import time | |
import streamlit as st | |
from annotated_text import annotated_text | |
from flair.data import Sentence | |
from flair.models import SequenceTagger | |
checkpoints = [ | |
"flair/pos-english", | |
] | |
colors = {'ADD': '#b9d9a6', 'AFX': '#eddc92', 'CC': '#95e9d7', 'CD': '#e797db', 'DT': '#9ff48b', 'EX': '#ed92b4', 'FW': '#decfa1', 'HYPH': '#ada7d7', 'IN': '#85fad8', 'JJ': '#8ba4f4', 'JJR': '#e7a498', 'JJS': '#e5c79a', 'LS': '#eb94b6', 'MD': '#e698ae', 'NFP': '#d9d1a6', 'NN': '#96e89f', 'NNP': '#e698c6', 'NNPS': '#ddbfa2', 'NNS': '#f788cd', 'PDT': '#f19c8d', 'POS': '#8ed5f0', 'PRP': '#c4d8a6', 'PRP$': '#e39bdc', 'RB': '#8df1e2', 'RBR': '#d7f787', 'RBS': '#f986f0', 'RP': '#878df8', 'SYM': '#83fe80', 'TO': '#a6d8c9', 'UH': '#d9a6cc', 'VB': '#a1deda', 'VBD': '#8fefe1', 'VBG': '#e3c79b', 'VBN': '#fb81fe', 'VBP': '#d5fe81', 'VBZ': '#8084ff', 'WDT': '#dd80fe', 'WP': '#9ce3e3', 'WP$': '#9fbddf', 'WRB': '#dea1b5', 'XX': '#93b8ec'} | |
def get_model(model_name): | |
return SequenceTagger.load(model_name) # Load the model | |
def getPos(s: Sentence): | |
texts = [] | |
labels = [] | |
for t in s.tokens: | |
for label in t.annotation_layers.keys(): | |
texts.append(t.text) | |
labels.append(t.get_labels(label)[0].value) | |
return texts, labels | |
def getDictFromPOS(texts, labels): | |
return [{ "text": t, "label": l } for t, l in zip(texts, labels)] | |
def getAnnotatedFromPOS(texts, labels): | |
return [(t,l,colors[l]) for t, l in zip(texts, labels)] | |
def main(): | |
st.title("Part of Speech Categorizer") | |
checkpoint = st.selectbox("Choose model", checkpoints) | |
model = get_model(checkpoint) | |
default_text = "This is an example sentence." | |
input_text = st.text_area( | |
label="Original text", | |
value=default_text, | |
) | |
start = None | |
if st.button("Submit"): | |
start = time.time() | |
with st.spinner("Computing"): | |
# Build Sentence | |
s = Sentence(input_text) | |
# predict tags | |
model.predict(s) | |
try: | |
texts, labels = getPos(s) | |
st.header("Labels:") | |
anns = getAnnotatedFromPOS(texts, labels) | |
annotated_text(*anns) | |
st.header("JSON:") | |
st.json(getDictFromPOS(texts, labels)) | |
except Exception as e: | |
st.error("Some error occured!" + str(e)) | |
st.stop() | |
st.write("---") | |
if start is not None: | |
st.text(f"prediction took {time.time() - start:.2f}s") | |
if __name__ == "__main__": | |
main() |