IT-Blender / src /attention_processor.py
WonwoongCho's picture
update app
cf0a3d5
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from typing import Callable, List, Optional, Tuple, Union
class FluxBlendedAttnProcessor2_0(nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_dim, ba_scale=1.0, num_ref=1):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxBlendedAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.blended_attention_k_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.blended_attention_v_proj = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.ba_scale = ba_scale
self.num_ref = num_ref
def __call__(
self,
attn, #: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
is_negative_prompt: bool = False
) -> torch.FloatTensor:
assert encoder_hidden_states is None, "It should be given as None because we are applying it-blender only to the single streams."
batch_size, _, _ = hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
normalized_query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(normalized_query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# [noisy, clean]
chunk = batch_size//(1+self.num_ref)
ba_query = normalized_query[:chunk] # noisy query
ba_key = self.blended_attention_k_proj(hidden_states[chunk:]) # clean key
ba_value = self.blended_attention_v_proj(hidden_states[chunk:]) # clean value
ba_key = ba_key.view(chunk, -1, attn.heads, head_dim).transpose(1, 2) # the -1 is gonna be multiplied by self.num_ref
ba_value = ba_value.view(chunk, -1, attn.heads, head_dim).transpose(1, 2)
ba_hidden_states = F.scaled_dot_product_attention(
ba_query, ba_key, ba_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False#, scale=(1 / math.sqrt(ba_query.size(-1)))*self.temperature if self.num_ref > 1 else 1 / math.sqrt(ba_query.size(-1))
)
ba_hidden_states = ba_hidden_states.transpose(1, 2).reshape(chunk, -1, attn.heads * head_dim)
ba_hidden_states = ba_hidden_states.to(query.dtype)
zero_tensor_list = [torch.zeros_like(ba_hidden_states)]*self.num_ref
ba_hidden_states = torch.cat([ba_hidden_states]+zero_tensor_list, dim=0)
hidden_states = hidden_states + self.ba_scale * ba_hidden_states
return hidden_states