Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| # -*- coding: utf-8 -*- | |
| """New_Finetune.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1HBmhGB58E7LDJPmp4fGI-mJhRb5OZDWo | |
| """ | |
| streamlit run app.py | |
| !pip install huggingface_hub | |
| from huggingface_hub import notebook_login | |
| notebook_login() | |
| !pip install --upgrade diffusers[torch] | |
| from torch import autocast | |
| from diffusers import StableDiffusionPipeline | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "CompVis/stable-diffusion-v1-4", | |
| use_auth_token=True | |
| ).to("cuda") | |
| prompt = "a sleek logo of a company, named 'SPARK', emblem style, our moto is 'Sparking some code to win', abstract logo, professinal, centre align, black background, the logo should resemble the name, clean" | |
| with autocast("cuda"): | |
| output = pipe(prompt) | |
| print(output.keys()) | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| image_data = output["images"] | |
| # If the image data is a list, assume it contains PIL images | |
| if isinstance(image_data, list): | |
| for i, image in enumerate(image_data): | |
| # Convert PIL image to numpy array | |
| image_np = np.array(image) | |
| # Display the image using Matplotlib | |
| plt.imshow(image_np) | |
| plt.axis('off') | |
| plt.title(f"Image {i+1}") | |
| plt.show() | |
| else: | |
| print("Unexpected image format. Unable to display.") | |