INR-Harmon / app.py
WindVChen's picture
Upload 3 files
ef47508
raw
history blame
13.4 kB
import os
import cv2
import gradio as gr
import numpy as np
import sys
import io
import torch
class Logger:
def __init__(self):
self.terminal = sys.stdout
self.log = io.BytesIO()
def write(self, message):
self.terminal.write(message)
self.log.write(bytes(message, encoding='utf-8'))
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
log = Logger()
sys.stdout = log
def read_logs():
out = log.log.getvalue().decode()
if out.count("\n") >= 30:
log.log = io.BytesIO()
sys.stdout.flush()
return out
with gr.Blocks() as app:
gr.Markdown("""
# HINet (or INR-Harmonization) - A novel image Harmonization method based on Implicit neural Networks
## Harmonize any image you want! Arbitrary resolution, and arbitrary aspect ratio!
### Official Gradio Demo. See here for [**How to play with this Space**](https://github.com/WindVChen/INR-Harmonization/blob/main/assets/demo.gif)
**Since Gradio Space only support CPU, the speed may kind of slow. You may better download the code to run locally with a GPU.**
<a href="https://huggingface.co/spaces/WindVChen/INR-Harmon?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
* Official Repo: [INR-Harmonization](https://github.com/WindVChen/INR-Harmonization)
""")
valid_checkpoints_dict = {"Resolution_256_iHarmony4": "Resolution_256_iHarmony4.pth",
"Resolution_1024_HAdobe5K": "Resolution_1024_HAdobe5K.pth",
"Resolution_2048_HAdobe5K": "Resolution_2048_HAdobe5K.pth",
"Resolution_RAW_HAdobe5K": "Resolution_RAW_HAdobe5K.pth",
"Resolution_RAW_iHarmony4": "Resolution_RAW_iHarmony4.pth"}
global_state = gr.State({
'pretrained_weight': valid_checkpoints_dict["Resolution_RAW_iHarmony4"],
})
with gr.Row():
with gr.Column():
form_composite_image = gr.Image(label='Input Composite image', type='pil').style(height="auto")
gr.Examples(examples=[os.path.join("demo", i) for i in os.listdir("demo") if "composite" in i],
label="Composite Examples", inputs=form_composite_image, cache_examples=False)
with gr.Column():
form_mask_image = gr.Image(label='Input Mask image', type='pil', interactive=False).style(
height="auto")
gr.Examples(examples=[os.path.join("demo", i) for i in os.listdir("demo") if "mask" in i],
label="Mask Examples", inputs=form_mask_image, cache_examples=False)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Model Selection', show_label=False)
with gr.Column(scale=4, min_width=10):
form_pretrained_dropdown = gr.Dropdown(
choices=list(valid_checkpoints_dict.values()),
label="Pretrained Model",
value=valid_checkpoints_dict["Resolution_RAW_iHarmony4"],
interactive=True
)
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Inference Mode', show_label=False)
with gr.Column(scale=4, min_width=10):
form_inference_mode = gr.Radio(
['Square Image', 'Arbitrary Image'],
value='Arbitrary Image',
interactive=False,
label='Mode',
)
with gr.Row():
with gr.Column(scale=2, min_width=10):
gr.Markdown(value='Split Parameter', show_label=False)
with gr.Column(scale=4, min_width=10):
form_split_res = gr.Slider(
minimum=0,
maximum=2048,
step=128,
value=256,
interactive=False,
label="Split Resolution",
)
form_split_num = gr.Number(
value=8,
interactive=False,
label="Split Number")
with gr.Row():
form_log = gr.Textbox(read_logs, label="Logs", interactive=False, type="text", every=1)
with gr.Column(scale=4):
form_harmonized_image = gr.Image(label='Harmonized Result', type='numpy', interactive=False).style(
height="auto")
form_start_btn = gr.Button("Start Harmonization", interactive=False)
form_reset_btn = gr.Button("Reset", interactive=True)
form_stop_btn = gr.Button("Stop", interactive=True)
def on_change_form_composite_image(form_composite_image):
if form_composite_image is None:
return gr.update(interactive=False, value=None), gr.update(value=None)
return gr.update(interactive=True), gr.update(value=None)
def on_change_form_mask_image(form_composite_image, form_mask_image):
if form_mask_image is None:
return gr.update(interactive=False), gr.update(
interactive=False if form_composite_image is None else True), gr.update(interactive=False), gr.update(
interactive=False), gr.update(interactive=False), gr.update(value=None)
if form_composite_image.size[:2] != form_mask_image.size[:2]:
raise gr.Error("Composite image and mask image should have the same resolution!")
else:
w, h = form_composite_image.size[:2]
if h != w or (h % 16 != 0):
return gr.update(value='Arbitrary Image', interactive=False), gr.update(interactive=True), gr.update(
interactive=True), gr.update(interactive=True), gr.update(interactive=False,
value=-1), gr.update(value=None)
else:
return gr.update(value='Square Image', interactive=True), gr.update(interactive=True), gr.update(
interactive=True), gr.update(interactive=False), gr.update(interactive=True,
value=h // 16,
maximum=h,
minimum=h // 16,
step=h // 16), gr.update(value=None)
form_composite_image.change(
on_change_form_composite_image,
inputs=[form_composite_image],
outputs=[form_mask_image, form_harmonized_image]
)
form_mask_image.change(
on_change_form_mask_image,
inputs=[form_composite_image, form_mask_image],
outputs=[form_inference_mode, form_mask_image, form_start_btn, form_split_num, form_split_res,
form_harmonized_image]
)
def on_change_form_split_num(form_composite_image, form_split_num):
w, h = form_composite_image.size[:2]
if form_split_num < 1:
return gr.update(value=1)
elif form_split_num > min(w, h):
return gr.update(value=min(w, h))
else:
return gr.update(value=form_split_num)
form_split_num.change(
on_change_form_split_num,
inputs=[form_composite_image, form_split_num],
outputs=[form_split_num]
)
def on_change_form_inference_mode(form_inference_mode):
if form_inference_mode == "Square Image":
return gr.update(interactive=True), gr.update(interactive=False)
else:
return gr.update(interactive=False), gr.update(interactive=True)
form_inference_mode.change(on_change_form_inference_mode, inputs=[form_inference_mode],
outputs=[form_split_res, form_split_num])
def on_click_form_start_btn(form_composite_image, form_mask_image, form_pretrained_dropdown, form_inference_mode,
form_split_res, form_split_num):
log.log = io.BytesIO()
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import parse_args, main_process, global_state
global_state[0] = 1
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
opt.split_resolution = form_split_res
opt.save_path = None
opt.workers = 0
opt.device = "cpu"
composite_image = np.asarray(form_composite_image)
mask = np.asarray(form_mask_image)
try:
return cv2.cvtColor(
main_process(opt, composite_image=composite_image, mask=mask),
cv2.COLOR_BGR2RGB)
except:
raise gr.Error("Patches too big. Try to reduce the `split_res`!")
else:
from inference_for_arbitrary_resolution_image import parse_args, main_process, global_state
global_state[0] = 1
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
opt.pretrained = os.path.join("./pretrained_models", form_pretrained_dropdown)
opt.split_num = int(form_split_num)
opt.save_path = None
opt.workers = 0
opt.device = "cpu"
composite_image = np.asarray(form_composite_image)
mask = np.asarray(form_mask_image)
try:
return cv2.cvtColor(
main_process(opt, composite_image=composite_image, mask=mask),
cv2.COLOR_BGR2RGB)
except:
raise gr.Error("Patches too big. Try to increase the `split_num`!")
generate = form_start_btn.click(on_click_form_start_btn,
inputs=[form_composite_image, form_mask_image, form_pretrained_dropdown,
form_inference_mode,
form_split_res, form_split_num], outputs=[form_harmonized_image])
def on_click_form_reset_btn(form_inference_mode):
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import global_state
global_state[0] = 0
else:
from inference_for_arbitrary_resolution_image import global_state
global_state[0] = 0
log.log = io.BytesIO()
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None,
interactive=False), gr.update(
interactive=False)
form_reset_btn.click(on_click_form_reset_btn,
inputs=[form_inference_mode],
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate)
def on_click_form_stop(form_inference_mode):
if form_inference_mode == "Square Image":
from efficient_inference_for_square_image import global_state
global_state[0] = 0
else:
from inference_for_arbitrary_resolution_image import global_state
global_state[0] = 0
log.log = io.BytesIO()
return gr.update(value=None), gr.update(value=None, interactive=True), gr.update(value=None,
interactive=False), gr.update(
interactive=False)
form_stop_btn.click(on_click_form_stop,
inputs=[form_inference_mode],
outputs=[form_log, form_composite_image, form_mask_image, form_start_btn], cancels=generate)
gr.Markdown("""
## Quick Start
1. Select desired `Pretrained Model`.
2. Select a composite image, and then a mask with the same size.
3. Select the inference mode (for non-square image, only `Arbitrary Image` support).
4. Set `Split Resolution` (Patches' resolution) or `Split Number` (How many patches, about N*N) according to the inference mode.
3. Click `Start` and enjoy it!
""")
gr.HTML("""
<style>
.container {
position: absolute;
height: 50px;
text-align: center;
line-height: 50px;
width: 100%;
}
</style>
<div class="container">
Gradio demo supported by
<a href="https://github.com/WindVChen">WindVChen</a>
</div>
""")
gr.close_all()
app.queue(concurrency_count=1, max_size=200, api_open=False)
app.launch(show_api=False)