Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import JSONResponse | |
| import uvicorn | |
| import os | |
| from predictor import SentenceExtractor # 保证导入规范文件名 `predictor.py` | |
| # 创建 FastAPI 应用 | |
| app = FastAPI() | |
| # 初始化 SentenceExtractor | |
| extractor = SentenceExtractor( | |
| eval_keywords_path="evaluation_keywords2.json", # 相对路径将被转换为绝对路径 | |
| model_path="distilled_model.onnx" | |
| ) | |
| async def root(): | |
| return {"message": "API is running. Use POST /evaluate to upload files."} | |
| async def health(): | |
| try: | |
| # 暴露关键运行状态,便于部署环境自检 | |
| return JSONResponse(content={ | |
| "model_loaded": getattr(extractor, "model_loaded", False), | |
| "model_path_abs": getattr(extractor, "model_path_abs", None), | |
| "model_sha256": getattr(extractor, "model_sha256", None), | |
| "providers": getattr(extractor, "providers", None), | |
| "tokenizer_loaded": getattr(extractor, "tokenizer_loaded", None), | |
| "last_tokenizer_error": getattr(extractor, "last_tokenizer_error", None), | |
| "aggregation_mode": extractor.aggregation_mode, | |
| "min_sentence_char_len": extractor.min_sentence_char_len, | |
| "merge_leading_punct": extractor.merge_leading_punct, | |
| }) | |
| except Exception as e: | |
| return JSONResponse(content={"error": str(e)}, status_code=500) | |
| async def evaluate_file(file: UploadFile = File(...)): | |
| try: | |
| # 读取上传文件内容 | |
| content = await file.read() | |
| text = content.decode("utf-8", errors="ignore") | |
| # 调用 extractor 进行文本分析 | |
| result = extractor.extract(text) | |
| # 格式化输出结果 | |
| formatted_result = { | |
| "综合评分": result["comprehensive_grade"], | |
| "积极词语评价数": result["positive_word_count"], | |
| "消极词语评价数": result["negative_word_count"], | |
| "中性词语评价数": result["neutral_word_count"], | |
| "句子评分": [] | |
| } | |
| for i, item in enumerate(result["scored_sentences"], 1): | |
| source = item.get('source', '?') | |
| reason = item.get('reason') or item.get('last_tokenizer_error') | |
| suffix = f" ({source})" | |
| if source == 'rule' and reason: | |
| # 将回退原因直接拼接到可见文本,便于客户端看到具体错误 | |
| if len(reason) > 120: | |
| reason = reason[:120] + '...' | |
| suffix += f" - reason: {reason}" | |
| formatted_result["句子评分"].append({ | |
| f"句子{i}": f"{item['sentence']} - {item['grade']}{suffix}" | |
| }) | |
| # 附加调试信息便于客户端确认 | |
| formatted_result["_debug"] = result.get("debug", {}) | |
| return JSONResponse(content=formatted_result) | |
| except Exception as e: | |
| return JSONResponse(content={"error": str(e)}, status_code=500) | |
| if __name__ == "__main__": | |
| port = int(os.getenv("PORT", 7860)) | |
| uvicorn.run(app, host="0.0.0.0", port=port) | |