Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import numpy as np | |
| import tensorflow as tf | |
| import pickle | |
| import tensorflow_hub as hub | |
| hub_layer = hub.KerasLayer("https://tfhub.dev/google/nnlm-id-dim128-with-normalization/2", | |
| input_shape=[], dtype=tf.string,) | |
| tf.keras.utils.get_custom_objects()['KerasLayer'] = hub_layer | |
| nlp = tf.keras.models.load_model('sentiment_PPKM_NLP_Model.h5') | |
| with open('formalisasi.txt', 'r') as file: | |
| function_text = file.read() | |
| with open("proses text.txt",'r') as file1: | |
| proc = file1.read() | |
| with open('kamus.txt','rb') as file2: | |
| kamus = pickle.load(file2) | |
| def create_function_from_text(function_tex): | |
| # Gunakan pustaka exec() untuk mengevaluasi teks menjadi objek fungsi | |
| exec(function_tex, globals()) | |
| # Ambil fungsi yang telah dibuat dan kembalikan sebagai output | |
| return list(globals().values())[0] | |
| formalize_words = create_function_from_text(function_text) | |
| text_process = create_function_from_text(proc) | |
| def run(): | |
| with st.form('key=sentiment prediction'): | |
| sentiment = st.text_input('ketikkan tweet anda:', '') | |
| submitted = st.form_submit_button('Predict') | |
| data_inf = { | |
| 'sentiment': sentiment | |
| } | |
| data_inf = pd.DataFrame([data_inf]) | |
| # Menerapkan fungsi klasifikasi sentimen menggunakan apply pada DataFrame | |
| data_inf['proc_sentiment'] = data_inf['sentiment'].apply(text_process) | |
| if submitted: | |
| y_pred_inf = [np.argmax(pred) for pred in nlp.predict(data_inf['proc_sentiment'])] | |
| st.write('sentiment : ', str(y_pred_inf)) | |
| if __name__ == '__main__': | |
| run() | |