|
import os |
|
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py") |
|
from huggingface_hub import CommitOperationAdd, create_commit, HfApi, HfFileSystem, login |
|
from huggingface_hub import ModelCardData, EvalResult, ModelCard |
|
from huggingface_hub.repocard_data import eval_results_to_model_index |
|
from huggingface_hub.repocard import RepoCard |
|
from openllm import get_json_format_data, get_datas |
|
from tqdm import tqdm |
|
import time |
|
import requests |
|
import pandas as pd |
|
from pytablewriter import MarkdownTableWriter |
|
import gradio as gr |
|
|
|
api = HfApi() |
|
fs = HfFileSystem() |
|
|
|
data = get_json_format_data() |
|
finished_models = get_datas(data) |
|
df = pd.DataFrame(finished_models) |
|
|
|
|
|
def search(df, value): |
|
result_df = df[df["Model"] == value] |
|
return result_df.iloc[0].to_dict() if not result_df.empty else None |
|
|
|
|
|
def get_details_url(repo): |
|
author, model = repo.split("/") |
|
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}" |
|
|
|
|
|
def get_query_url(repo): |
|
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}" |
|
|
|
|
|
desc = """ |
|
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr |
|
|
|
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card. |
|
|
|
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions |
|
""" |
|
|
|
|
|
def get_task_summary(results): |
|
return { |
|
"ARC": |
|
{"dataset_type":"ai2_arc", |
|
"dataset_name":"AI2 Reasoning Challenge (25-Shot)", |
|
"dataset_short_name": "ARC (25-shot)", |
|
"metric_type":"acc_norm", |
|
"metric_value":results["ARC"], |
|
"dataset_config":"ARC-Challenge", |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 25}, |
|
"metric_name":"normalized accuracy" |
|
}, |
|
"HellaSwag": |
|
{"dataset_type":"hellaswag", |
|
"dataset_name":"HellaSwag (10-Shot)", |
|
"dataset_short_name": "HellaSwag (10-shot)", |
|
"metric_type":"acc_norm", |
|
"metric_value":results["HellaSwag"], |
|
"dataset_config":None, |
|
"dataset_split":"validation", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 10}, |
|
"metric_name":"normalized accuracy" |
|
}, |
|
"MMLU": |
|
{ |
|
"dataset_type":"cais/mmlu", |
|
"dataset_name":"MMLU (5-Shot)", |
|
"dataset_short_name": "MMLU (5-Shot)", |
|
"metric_type":"acc", |
|
"metric_value":results["MMLU"], |
|
"dataset_config":"all", |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 5}, |
|
"metric_name":"accuracy" |
|
}, |
|
"TruthfulQA": |
|
{ |
|
"dataset_type":"truthful_qa", |
|
"dataset_name":"TruthfulQA (0-shot)", |
|
"dataset_short_name": "TruthfulQA (0-shot)", |
|
"metric_type":"mc2", |
|
"metric_value":results["TruthfulQA"], |
|
"dataset_config":"multiple_choice", |
|
"dataset_split":"validation", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 0}, |
|
"metric_name":None |
|
}, |
|
"Winogrande": |
|
{ |
|
"dataset_type":"winogrande", |
|
"dataset_name":"Winogrande (5-shot)", |
|
"dataset_short_name": "Winogrande (5-shot)", |
|
"metric_type":"acc", |
|
"metric_value":results["Winogrande"], |
|
"dataset_config":"winogrande_xl", |
|
"dataset_split":"validation", |
|
"dataset_args":{"num_few_shot": 5}, |
|
"metric_name":"accuracy" |
|
}, |
|
"GSM8K": |
|
{ |
|
"dataset_type":"gsm8k", |
|
"dataset_name":"GSM8k (5-shot)", |
|
"dataset_short_name": "GSM8k (5-shot)", |
|
"metric_type":"acc", |
|
"metric_value":results["GSM8K"], |
|
"dataset_config":"main", |
|
"dataset_split":"test", |
|
"dataset_args":{"num_few_shot": 5}, |
|
"metric_name":"accuracy" |
|
} |
|
} |
|
|
|
|
|
|
|
def get_eval_results(repo): |
|
results = search(df, repo) |
|
task_summary = get_task_summary(results) |
|
md_writer = MarkdownTableWriter() |
|
md_writer.headers = ["Metric", "Value"] |
|
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_short_name"], v["metric_value"]] for v in task_summary.items()] |
|
|
|
text = f""" |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here]({get_details_url(repo)}) |
|
|
|
{md_writer.dumps()} |
|
""" |
|
return text |
|
|
|
|
|
def get_edited_yaml_readme(repo): |
|
card = ModelCard.load(repo) |
|
results = search(df, repo) |
|
|
|
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"} |
|
|
|
tasks_results = get_task_summary(results) |
|
|
|
if not card.data['eval_results']: |
|
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()]) |
|
else: |
|
for task in tasks_results.values(): |
|
cur_result = EvalResult(**task, **common) |
|
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']): |
|
continue |
|
card.data['eval_results'].append(cur_result) |
|
|
|
return str(card) |
|
|
|
|
|
def commit(hf_token, repo, pr_number=None, message="Adding Evaluation Results"): |
|
login(hf_token) |
|
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True} |
|
|
|
try: |
|
try: |
|
readme_text = get_edited_yaml_readme(repo) + get_eval_results(repo) |
|
except Exception as e: |
|
if "Repo card metadata block was not found." in str(e): |
|
readme_text = get_edited_yaml_readme(repo) |
|
else: |
|
print(f"Something went wrong: {e}") |
|
|
|
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())] |
|
commit = (create_commit(repo_id=repo, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url) |
|
|
|
return commit |
|
|
|
except Exception as e: |
|
|
|
if "Discussions are disabled for this repo" in str(e): |
|
return "Discussions disabled" |
|
elif "Cannot access gated repo" in str(e): |
|
return "Gated repo" |
|
elif "Repository Not Found" in str(e): |
|
return "Repository Not Found" |
|
else: |
|
return e |
|
|
|
|
|
gradio_title="🧐 Open LLM Leaderboard Results PR Opener" |
|
gradio_desc= """🎯 This tool's aim is to provide [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) results in the model card. |
|
|
|
## 💭 What Does This Tool Do: |
|
|
|
- This tool adds the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) result of your model at the end of your model card. |
|
|
|
- This tool also adds evaluation results as your model's metadata to showcase the evaluation results as a widget. |
|
|
|
## 🛠️ Backend |
|
|
|
The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api). |
|
|
|
## 🤝 Acknowledgements |
|
|
|
- Special thanks to Clémentine Fourrier (clefourrier) for her help and contributions to the code. |
|
|
|
- Special thanks to [Lucain Pouget (Wauplin)](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api) for assisting with the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api). |
|
""" |
|
|
|
demo = gr.Interface(title=gradio_title, description=gradio_desc, fn=commit, inputs=["text", "text"], outputs="text") |
|
|
|
demo.launch() |