Leimingkun commited on
Commit
f343ea1
Β·
1 Parent(s): 123f4ac

stylestudio

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ app_exp.py
app.py CHANGED
@@ -59,23 +59,37 @@ def get_example():
59
  case = [
60
  [
61
  './assets/style1.jpg',
62
- "Text-Driven Style Synthesis",
63
  "A red apple",
64
  7.0,
65
  42,
66
- 20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  ],
68
  ]
69
  return case
70
 
71
- def run_for_examples(style_image_pil, target, prompt, guidance_scale, seed, end_fusion):
72
 
73
  return create_image(
74
  style_image_pil=style_image_pil,
75
  prompt=prompt,
76
- guidance_scale=7.0,
 
77
  num_inference_steps=50,
78
- seed=42,
79
  end_fusion=end_fusion,
80
  use_SAttn=True,
81
  crossModalAdaIN=True,
@@ -86,21 +100,20 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
86
  seed = random.randint(0, MAX_SEED)
87
  return seed
88
 
89
- @spaces.GPU
90
- def create_image(
91
- style_image_pil,
92
  prompt,
93
- guidance_scale,
94
- num_inference_steps,
95
- end_fusion,
96
- crossModalAdaIN,
97
- use_SAttn,
98
- seed,
99
  neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
 
 
 
 
 
 
100
  ):
101
 
102
  style_image = style_image_pil
103
 
 
104
  generator = torch.Generator(device).manual_seed(seed)
105
  init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
106
  num_sample=1
@@ -122,6 +135,7 @@ def create_image(
122
  use_SAttn=use_SAttn,
123
 
124
  generator=generator,
 
125
  )
126
 
127
  if use_SAttn:
@@ -135,23 +149,28 @@ title = r"""
135
  """
136
 
137
  description = r"""
138
- <b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/MingKunLei/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
139
  How to use:<br>
140
  1. Upload a style image.
141
- 2. <b>Enter your desired prompt<b>.
142
  3. Click the <b>Submit</b> button to begin customization.
143
  4. Share your stylized photo with your friends and enjoy! 😊
144
 
145
  Advanced usage:<br>
146
  1. Click advanced options.
147
  2. Choose different guidance and steps.
148
- 3. Set the timing for the Teacher Model's participation
 
149
  """
150
 
151
  article = r"""
152
  ---
153
  πŸ“ **Tips**
154
- As the value of end_fusion increases, the style gradually diminishes.
 
 
 
 
155
  ---
156
  πŸ“ **Citation**
157
  <br>
@@ -176,10 +195,6 @@ with block:
176
  with gr.Column():
177
  style_image_pil = gr.Image(label="Style Image", type='pil')
178
 
179
- target = gr.Radio(["Text-Driven Style Synthesis"],
180
- value="Text-Driven Style Synthesis",
181
- label="task")
182
-
183
  prompt = gr.Textbox(label="Prompt",
184
  value="A red apple")
185
 
@@ -190,14 +205,14 @@ with block:
190
 
191
  guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
192
 
193
- num_inference_steps = gr.Slider(minimum=5, maximum=100.0, step=1.0, value=50,
194
  label="num inference steps")
195
 
196
- end_fusion = gr.Slider(minimum=0, maximum=num_inference_steps, step=1.0, value=20.0, label="end fusion")
197
 
198
- seed = gr.Slider(minimum=-1000000, maximum=1000000, value=1, step=1, label="Seed Value")
199
 
200
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
201
 
202
  crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
203
  use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
@@ -218,18 +233,18 @@ with block:
218
  inputs=[
219
  style_image_pil,
220
  prompt,
 
221
  guidance_scale,
222
  num_inference_steps,
223
  end_fusion,
224
  crossModalAdaIN,
225
  use_SAttn,
226
- seed,
227
- neg_prompt,],
228
  outputs=[generated_image])
229
 
230
  gr.Examples(
231
  examples=get_example(),
232
- inputs=[style_image_pil, target, prompt, guidance_scale, seed, end_fusion],
233
  fn=run_for_examples,
234
  outputs=[generated_image],
235
  cache_examples=False,
 
59
  case = [
60
  [
61
  './assets/style1.jpg',
 
62
  "A red apple",
63
  7.0,
64
  42,
65
+ 10,
66
+ ],
67
+ [
68
+ './assets/style2.jpg',
69
+ "A black car",
70
+ 7.0,
71
+ 42,
72
+ 10,
73
+ ],
74
+ [
75
+ './assets/style3.jpg',
76
+ "A orange bus",
77
+ 7.0,
78
+ 42,
79
+ 10,
80
  ],
81
  ]
82
  return case
83
 
84
+ def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion):
85
 
86
  return create_image(
87
  style_image_pil=style_image_pil,
88
  prompt=prompt,
89
+ neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
90
+ guidance_scale=guidance_scale,
91
  num_inference_steps=50,
92
+ seed=seed,
93
  end_fusion=end_fusion,
94
  use_SAttn=True,
95
  crossModalAdaIN=True,
 
100
  seed = random.randint(0, MAX_SEED)
101
  return seed
102
 
103
+ def create_image(style_image_pil,
 
 
104
  prompt,
 
 
 
 
 
 
105
  neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
106
+ guidance_scale=7,
107
+ num_inference_steps=50,
108
+ end_fusion=20,
109
+ crossModalAdaIN=True,
110
+ use_SAttn=True,
111
+ seed=42,
112
  ):
113
 
114
  style_image = style_image_pil
115
 
116
+ print(seed)
117
  generator = torch.Generator(device).manual_seed(seed)
118
  init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
119
  num_sample=1
 
135
  use_SAttn=use_SAttn,
136
 
137
  generator=generator,
138
+ latents=init_latents,
139
  )
140
 
141
  if use_SAttn:
 
149
  """
150
 
151
  description = r"""
152
+ <b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
153
  How to use:<br>
154
  1. Upload a style image.
155
+ 2. <b>Enter your desired prompt</b>.
156
  3. Click the <b>Submit</b> button to begin customization.
157
  4. Share your stylized photo with your friends and enjoy! 😊
158
 
159
  Advanced usage:<br>
160
  1. Click advanced options.
161
  2. Choose different guidance and steps.
162
+ 3. Set the timing for the Teacher Model's participation.
163
+ 4. Feel free to discontinue using the Cross-Modal AdaIN and the Teacher Model for result comparison.
164
  """
165
 
166
  article = r"""
167
  ---
168
  πŸ“ **Tips**
169
+ <br>
170
+ 1. As the value of end_fusion <b>increases</b>, the style gradually diminishes.
171
+ Therefore, it is suggested to set end_fusion to be between <b>1/5 and 1/3</b> of the number of inference steps (num inference steps).
172
+ 2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>.
173
+
174
  ---
175
  πŸ“ **Citation**
176
  <br>
 
195
  with gr.Column():
196
  style_image_pil = gr.Image(label="Style Image", type='pil')
197
 
 
 
 
 
198
  prompt = gr.Textbox(label="Prompt",
199
  value="A red apple")
200
 
 
205
 
206
  guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
207
 
208
+ num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50,
209
  label="num inference steps")
210
 
211
+ end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion")
212
 
213
+ seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value")
214
 
215
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
216
 
217
  crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
218
  use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
 
233
  inputs=[
234
  style_image_pil,
235
  prompt,
236
+ neg_prompt,
237
  guidance_scale,
238
  num_inference_steps,
239
  end_fusion,
240
  crossModalAdaIN,
241
  use_SAttn,
242
+ seed,],
 
243
  outputs=[generated_image])
244
 
245
  gr.Examples(
246
  examples=get_example(),
247
+ inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion],
248
  fn=run_for_examples,
249
  outputs=[generated_image],
250
  cache_examples=False,
app_exp.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append("./")
3
+ import gradio as gr
4
+ import spaces
5
+ import torch
6
+ from ip_adapter.utils import BLOCKS as BLOCKS
7
+ import numpy as np
8
+ import random
9
+ from diffusers import (
10
+ AutoencoderKL,
11
+ StableDiffusionXLPipeline,
12
+ )
13
+ from ip_adapter import StyleStudio_Adapter
14
+
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
17
+ base_model_path = "/mnt/agilab/models/sdxl"
18
+ image_encoder_path = "/mnt/agilab/models/ipadapter_sdxl/image_encoder"
19
+ csgo_ckpt = "/mnt/agilab/models/CSGO/csgo_4_32.bin"
20
+ pretrained_vae_name_or_path = '/mnt/agilab/models/madebyollin_sdxl-vae-fp16-fix'
21
+ weight_dtype = torch.float16
22
+
23
+ vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
24
+ pipe = StableDiffusionXLPipeline.from_pretrained(
25
+ base_model_path,
26
+ torch_dtype=torch.float16,
27
+ add_watermarker=False,
28
+ vae=vae
29
+ )
30
+ pipe.enable_vae_tiling()
31
+
32
+ target_style_blocks = BLOCKS['style']
33
+
34
+ csgo = StyleStudio_Adapter(
35
+ pipe, image_encoder_path, csgo_ckpt, device, num_style_tokens=32,
36
+ target_style_blocks=target_style_blocks,
37
+ controlnet_adapter=False,
38
+ style_model_resampler=True,
39
+
40
+ fuSAttn=True,
41
+ end_fusion=20,
42
+ adainIP=True,
43
+ )
44
+
45
+ MAX_SEED = np.iinfo(np.int32).max
46
+
47
+
48
+ def get_example():
49
+ case = [
50
+ [
51
+ './assets/style1.jpg',
52
+ "A red apple",
53
+ 7.0,
54
+ 42,
55
+ 10,
56
+ ],
57
+ [
58
+ './assets/style2.jpg',
59
+ "A black car",
60
+ 7.0,
61
+ 42,
62
+ 10,
63
+ ],
64
+ [
65
+ './assets/style3.jpg',
66
+ "A orange bus",
67
+ 7.0,
68
+ 42,
69
+ 10,
70
+ ],
71
+ ]
72
+ return case
73
+
74
+ def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion):
75
+
76
+ return create_image(
77
+ style_image_pil=style_image_pil,
78
+ prompt=prompt,
79
+ neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
80
+ guidance_scale=guidance_scale,
81
+ num_inference_steps=50,
82
+ seed=seed,
83
+ end_fusion=end_fusion,
84
+ use_SAttn=True,
85
+ crossModalAdaIN=True,
86
+ )
87
+
88
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
89
+ if randomize_seed:
90
+ seed = random.randint(0, MAX_SEED)
91
+ return seed
92
+
93
+ def create_image(style_image_pil,
94
+ prompt,
95
+ neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
96
+ guidance_scale=7,
97
+ num_inference_steps=50,
98
+ end_fusion=20,
99
+ crossModalAdaIN=True,
100
+ use_SAttn=True,
101
+ seed=42,
102
+ ):
103
+
104
+ style_image = style_image_pil
105
+
106
+ generator = torch.Generator(device).manual_seed(seed)
107
+ init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
108
+ num_sample=1
109
+ if use_SAttn:
110
+ num_sample=2
111
+ init_latents = init_latents.repeat(num_sample, 1, 1, 1)
112
+ with torch.no_grad():
113
+ images = csgo.generate(pil_style_image=style_image,
114
+ prompt=prompt,
115
+ negative_prompt=neg_prompt,
116
+ height=1024,
117
+ width=1024,
118
+ guidance_scale=guidance_scale,
119
+ num_images_per_prompt=1,
120
+ num_samples=num_sample,
121
+ num_inference_steps=num_inference_steps,
122
+ end_fusion=end_fusion,
123
+ cross_modal_adain=crossModalAdaIN,
124
+ use_SAttn=use_SAttn,
125
+
126
+ generator=generator,
127
+ latents=init_latents,
128
+ )
129
+
130
+ if use_SAttn:
131
+ return [images[1]]
132
+ else:
133
+ return [images[0]]
134
+
135
+ # Description
136
+ title = r"""
137
+ <h1 align="center">StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</h1>
138
+ """
139
+
140
+ description = r"""
141
+ <b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
142
+ How to use:<br>
143
+ 1. Upload a style image.
144
+ 2. <b>Enter your desired prompt</b>.
145
+ 3. Click the <b>Submit</b> button to begin customization.
146
+ 4. Share your stylized photo with your friends and enjoy! 😊
147
+
148
+ Advanced usage:<br>
149
+ 1. Click advanced options.
150
+ 2. Choose different guidance and steps.
151
+ 3. Set the timing for the Teacher Model's participation.
152
+ 4.
153
+ """
154
+
155
+ article = r"""
156
+ ---
157
+ πŸ“ **Tips**
158
+ <br>
159
+ 1. As the value of end_fusion <b>increases</b>, the style gradually diminishes.
160
+ Therefore, it is suggested to set end_fusion to be between 1/5 and 1/3 of the number of inference steps (num inference steps).
161
+ 2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>.
162
+
163
+ ---
164
+ πŸ“ **Citation**
165
+ <br>
166
+ If our work is helpful for your research or applications, please cite us via:
167
+ ```bibtex
168
+
169
+ ```
170
+ πŸ“§ **Contact**
171
+ <br>
172
+ If you have any questions, please feel free to open an issue or directly reach us out at <b>leimingkun@westlake.edu.cn</b>.
173
+ """
174
+
175
+ block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
176
+ with block:
177
+ gr.Markdown(title)
178
+ gr.Markdown(description)
179
+
180
+ with gr.Tabs():
181
+ with gr.Row():
182
+ with gr.Column():
183
+ with gr.Row():
184
+ with gr.Column():
185
+ style_image_pil = gr.Image(label="Style Image", type='pil')
186
+
187
+ prompt = gr.Textbox(label="Prompt",
188
+ value="A red apple")
189
+
190
+ neg_prompt = gr.Textbox(label="Negative Prompt",
191
+ value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
192
+
193
+ with gr.Accordion(open=True, label="Advanced Options"):
194
+
195
+ guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
196
+
197
+ num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50,
198
+ label="num inference steps")
199
+
200
+ end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion")
201
+
202
+ seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value")
203
+
204
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
205
+
206
+ crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
207
+ use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
208
+
209
+ generate_button = gr.Button("Generate Image")
210
+
211
+ with gr.Column():
212
+ generated_image = gr.Gallery(label="Generated Image")
213
+
214
+ generate_button.click(
215
+ fn=randomize_seed_fn,
216
+ inputs=[seed, randomize_seed],
217
+ outputs=seed,
218
+ queue=False,
219
+ api_name=False,
220
+ ).then(
221
+ fn=create_image,
222
+ inputs=[
223
+ style_image_pil,
224
+ prompt,
225
+ neg_prompt,
226
+ guidance_scale,
227
+ num_inference_steps,
228
+ end_fusion,
229
+ crossModalAdaIN,
230
+ use_SAttn,
231
+ seed,],
232
+ outputs=[generated_image])
233
+
234
+ gr.Examples(
235
+ examples=get_example(),
236
+ inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion],
237
+ fn=run_for_examples,
238
+ outputs=[generated_image],
239
+ cache_examples=False,
240
+ )
241
+
242
+ gr.Markdown(article)
243
+
244
+ block.launch(server_name="0.0.0.0", server_port=1234)
assets/style3.jpg ADDED
ip_adapter/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/ip_adapter/__pycache__/__init__.cpython-39.pyc and b/ip_adapter/__pycache__/__init__.cpython-39.pyc differ
 
ip_adapter/__pycache__/attention_processor.cpython-39.pyc CHANGED
Binary files a/ip_adapter/__pycache__/attention_processor.cpython-39.pyc and b/ip_adapter/__pycache__/attention_processor.cpython-39.pyc differ
 
ip_adapter/__pycache__/ip_adapter.cpython-39.pyc CHANGED
Binary files a/ip_adapter/__pycache__/ip_adapter.cpython-39.pyc and b/ip_adapter/__pycache__/ip_adapter.cpython-39.pyc differ
 
ip_adapter/__pycache__/resampler.cpython-39.pyc CHANGED
Binary files a/ip_adapter/__pycache__/resampler.cpython-39.pyc and b/ip_adapter/__pycache__/resampler.cpython-39.pyc differ
 
ip_adapter/__pycache__/utils.cpython-39.pyc CHANGED
Binary files a/ip_adapter/__pycache__/utils.cpython-39.pyc and b/ip_adapter/__pycache__/utils.cpython-39.pyc differ
 
ip_adapter/attention_processor.py CHANGED
@@ -838,6 +838,8 @@ class AttnProcessor2_0_hijack(torch.nn.Module):
838
  # the output of sdp = (batch, num_heads, seq_len, head_dim)
839
  # TODO: add support for attn.scale when we move to Torch 2.1
840
  if self.fuSAttn and self.denoise_step <= self.end_fusion:
 
 
841
  assert query.shape[0] == 4
842
  scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
843
  attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
 
838
  # the output of sdp = (batch, num_heads, seq_len, head_dim)
839
  # TODO: add support for attn.scale when we move to Torch 2.1
840
  if self.fuSAttn and self.denoise_step <= self.end_fusion:
841
+ if self.end_fusion == 0:
842
+ print("yes")
843
  assert query.shape[0] == 4
844
  scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
845
  attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
ip_adapter/ip_adapter.py CHANGED
@@ -1121,6 +1121,7 @@ class StyleStudio_Adapter(CSGO):
1121
  for attn_processor in self.pipe.unet.attn_processors.values():
1122
  if isinstance(attn_processor, AttnProcessor_hijack) or isinstance(attn_processor, IPAttnProcessor_cross_modal):
1123
  attn_processor.num_inference_step = num_T
 
1124
 
1125
  def set_adain(self, use_CMA):
1126
  for attn_processor in self.pipe.unet.attn_processors.values():
@@ -1143,7 +1144,7 @@ class StyleStudio_Adapter(CSGO):
1143
  use_SAttn=True,
1144
  **kwargs,
1145
  ):
1146
-
1147
  self.set_endFusion(end_T = end_fusion)
1148
  self.set_adain(use_CMA=cross_modal_adain)
1149
  self.set_SAttn(use_SAttn=use_SAttn)
 
1121
  for attn_processor in self.pipe.unet.attn_processors.values():
1122
  if isinstance(attn_processor, AttnProcessor_hijack) or isinstance(attn_processor, IPAttnProcessor_cross_modal):
1123
  attn_processor.num_inference_step = num_T
1124
+ attn_processor.denoise_step = 0
1125
 
1126
  def set_adain(self, use_CMA):
1127
  for attn_processor in self.pipe.unet.attn_processors.values():
 
1144
  use_SAttn=True,
1145
  **kwargs,
1146
  ):
1147
+ print(end_fusion)
1148
  self.set_endFusion(end_T = end_fusion)
1149
  self.set_adain(use_CMA=cross_modal_adain)
1150
  self.set_SAttn(use_SAttn=use_SAttn)