Spaces:
Running
Running
Upload multi_comfy.py
Browse files- modules/multi_comfy.py +384 -0
modules/multi_comfy.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import os
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
|
| 7 |
+
css = """
|
| 8 |
+
#custom-gallery{--row-height:180px;display:grid;grid-auto-rows:min-content;gap:10px}#custom-gallery .thumbnail-item{height:var(--row-height);width:100%;position:relative;overflow:hidden;border-radius:8px;box-shadow:0 2px 5px rgb(0 0 0 / .1);transition:transform 0.2s ease,box-shadow 0.2s ease}#custom-gallery .thumbnail-item:hover{transform:translateY(-3px);box-shadow:0 4px 12px rgb(0 0 0 / .15)}#custom-gallery .thumbnail-item img{width:auto;height:100%;max-width:100%;max-height:var(--row-height);object-fit:contain;margin:0 auto;display:block}#custom-gallery .thumbnail-item img.portrait{max-width:100%}#custom-gallery .thumbnail-item img.landscape{max-height:100%}.gallery-container{max-height:500px;overflow-y:auto;padding-right:0;--size-80:500px}.thumbnails{display:flex;position:absolute;bottom:0;width:120px;overflow-x:scroll;padding-top:320px;padding-bottom:280px;padding-left:4px;flex-wrap:wrap}
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
EMPTY_RESULT = ("Not Available",) * 15
|
| 12 |
+
|
| 13 |
+
# ---------- EXTRACTION FUNCTIONS ----------
|
| 14 |
+
def read_metadata(file_path):
|
| 15 |
+
try:
|
| 16 |
+
with Image.open(file_path) as img:
|
| 17 |
+
return img.info
|
| 18 |
+
except Exception as e:
|
| 19 |
+
return {"error": f"Error reading file: {str(e)}"}
|
| 20 |
+
|
| 21 |
+
def extract_workflow_data(file_path):
|
| 22 |
+
metadata = read_metadata(file_path)
|
| 23 |
+
if "error" in metadata:
|
| 24 |
+
return {"error": metadata["error"]}
|
| 25 |
+
|
| 26 |
+
if 'prompt' in metadata:
|
| 27 |
+
try:
|
| 28 |
+
return json.loads(metadata['prompt'])
|
| 29 |
+
except json.JSONDecodeError:
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
for key, value in metadata.items():
|
| 33 |
+
if isinstance(value, str) and value.strip().startswith('{'):
|
| 34 |
+
try:
|
| 35 |
+
return json.loads(value)
|
| 36 |
+
except json.JSONDecodeError:
|
| 37 |
+
continue
|
| 38 |
+
return {"error": "No workflow data found"}
|
| 39 |
+
|
| 40 |
+
def extract_ksampler_params(workflow_data):
|
| 41 |
+
seed = steps = cfg = sampler = scheduler = denoise = "Not found"
|
| 42 |
+
if not isinstance(workflow_data, dict):
|
| 43 |
+
return seed, steps, cfg, sampler, scheduler, denoise
|
| 44 |
+
for node in workflow_data.values():
|
| 45 |
+
if isinstance(node, dict) and node.get("class_type", "") in ["KSampler", "KSampler (Efficient)"]:
|
| 46 |
+
inputs = node.get("inputs", {})
|
| 47 |
+
seed = inputs.get("seed", "Not found")
|
| 48 |
+
steps = inputs.get("steps", "Not found")
|
| 49 |
+
cfg = inputs.get("cfg", "Not found")
|
| 50 |
+
sampler = inputs.get("sampler_name", "Not found")
|
| 51 |
+
scheduler = inputs.get("scheduler", "Not found")
|
| 52 |
+
denoise = inputs.get("denoise", "Not found")
|
| 53 |
+
break
|
| 54 |
+
return str(seed), str(steps), str(cfg), str(sampler), str(scheduler), str(denoise)
|
| 55 |
+
|
| 56 |
+
def extract_prompts(workflow_data):
|
| 57 |
+
positive = negative = "Not found"
|
| 58 |
+
if not isinstance(workflow_data, dict):
|
| 59 |
+
return positive, negative
|
| 60 |
+
for node in workflow_data.values():
|
| 61 |
+
if isinstance(node, dict):
|
| 62 |
+
class_type = node.get("class_type", "")
|
| 63 |
+
inputs = node.get("inputs", {})
|
| 64 |
+
title = node.get("_meta", {}).get("title", "") if node.get("_meta") else ""
|
| 65 |
+
|
| 66 |
+
if "Text to Conditioning" in class_type:
|
| 67 |
+
if "POSITIVE" in title:
|
| 68 |
+
positive = inputs.get("text", "Not found")
|
| 69 |
+
elif "NEGATIVE" in title:
|
| 70 |
+
negative = inputs.get("text", "Not found")
|
| 71 |
+
if "ShowText|pysssss" in class_type:
|
| 72 |
+
if "text_1" in inputs:
|
| 73 |
+
positive = inputs["text_1"]
|
| 74 |
+
if "text_2" in inputs:
|
| 75 |
+
negative = inputs["text_2"]
|
| 76 |
+
if "DPRandomGenerator" in class_type:
|
| 77 |
+
if "POSITIVE" in title:
|
| 78 |
+
positive = inputs.get("text", "Not found")
|
| 79 |
+
elif "NEGATIVE" in title:
|
| 80 |
+
negative = inputs.get("text", "Not found")
|
| 81 |
+
return str(positive), str(negative)
|
| 82 |
+
|
| 83 |
+
def extract_loras(workflow_data):
|
| 84 |
+
loras = []
|
| 85 |
+
if not isinstance(workflow_data, dict):
|
| 86 |
+
return "None found"
|
| 87 |
+
for node in workflow_data.values():
|
| 88 |
+
if isinstance(node, dict):
|
| 89 |
+
inputs = node.get("inputs", {})
|
| 90 |
+
if "LoraLoader" in node.get("class_type", ""):
|
| 91 |
+
name = inputs.get("lora_name", "Unknown")
|
| 92 |
+
strength = inputs.get("strength_model", "Unknown")
|
| 93 |
+
loras.append(f"{name} (Strength: {strength})")
|
| 94 |
+
for val in inputs.values():
|
| 95 |
+
if isinstance(val, str) and "lora:" in val.lower():
|
| 96 |
+
loras.append(val)
|
| 97 |
+
return "\n".join(loras) if loras else "None found"
|
| 98 |
+
|
| 99 |
+
def extract_model_info(workflow_data):
|
| 100 |
+
models = []
|
| 101 |
+
if not isinstance(workflow_data, dict):
|
| 102 |
+
return "Not found"
|
| 103 |
+
for node in workflow_data.values():
|
| 104 |
+
if isinstance(node, dict):
|
| 105 |
+
inputs = node.get("inputs", {})
|
| 106 |
+
class_type = node.get("class_type", "")
|
| 107 |
+
if "CheckpointLoader" in class_type:
|
| 108 |
+
models.append(inputs.get("ckpt_name", "Unknown"))
|
| 109 |
+
if "Model Mecha Recipe" in class_type:
|
| 110 |
+
models.append(inputs.get("model_path", "Unknown"))
|
| 111 |
+
return "\n".join(models) if models else "Not found"
|
| 112 |
+
|
| 113 |
+
def extract_image_info_from_file(image_path):
|
| 114 |
+
"""Extract actual image dimensions from the image file itself"""
|
| 115 |
+
try:
|
| 116 |
+
with Image.open(image_path) as img:
|
| 117 |
+
width, height = img.size
|
| 118 |
+
return str(width), str(height)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
return "Not found", "Not found"
|
| 121 |
+
|
| 122 |
+
def extract_batch_size(workflow_data):
|
| 123 |
+
"""Extract batch size from workflow data"""
|
| 124 |
+
batch_size = "Not found"
|
| 125 |
+
if not isinstance(workflow_data, dict):
|
| 126 |
+
return batch_size
|
| 127 |
+
for node in workflow_data.values():
|
| 128 |
+
if isinstance(node, dict) and node.get("class_type", "") == "EmptyLatentImage":
|
| 129 |
+
inputs = node.get("inputs", {})
|
| 130 |
+
batch_size = inputs.get("batch_size", "Not found")
|
| 131 |
+
break
|
| 132 |
+
return str(batch_size)
|
| 133 |
+
|
| 134 |
+
def extract_nodes_info(workflow_data):
|
| 135 |
+
if not isinstance(workflow_data, dict):
|
| 136 |
+
return "Not found"
|
| 137 |
+
total_nodes = len(workflow_data)
|
| 138 |
+
node_types = defaultdict(int)
|
| 139 |
+
for node in workflow_data.values():
|
| 140 |
+
if isinstance(node, dict):
|
| 141 |
+
node_types[node.get("class_type", "Unknown")] += 1
|
| 142 |
+
summary = f"Total Nodes: {total_nodes}\n"
|
| 143 |
+
for t, c in sorted(node_types.items()):
|
| 144 |
+
summary += f"{t}: {c}\n"
|
| 145 |
+
return summary.strip()
|
| 146 |
+
|
| 147 |
+
def extract_workflow_as_json(workflow_data):
|
| 148 |
+
if isinstance(workflow_data, dict):
|
| 149 |
+
return json.dumps(workflow_data, ensure_ascii=False, indent=2)
|
| 150 |
+
return "{}"
|
| 151 |
+
# ---------- EXTRACTION FUNCTIONS ----------
|
| 152 |
+
#
|
| 153 |
+
# ---------- IMAGE PROCESSING ----------
|
| 154 |
+
def process_single_image(image_path):
|
| 155 |
+
"""Extract all workflow info from a single image path."""
|
| 156 |
+
if not image_path:
|
| 157 |
+
return EMPTY_RESULT
|
| 158 |
+
|
| 159 |
+
workflow_data = extract_workflow_data(image_path)
|
| 160 |
+
|
| 161 |
+
if isinstance(workflow_data, dict) and "error" not in workflow_data:
|
| 162 |
+
seed, steps, cfg, sampler, scheduler, denoise = extract_ksampler_params(workflow_data)
|
| 163 |
+
positive, negative = extract_prompts(workflow_data)
|
| 164 |
+
loras = extract_loras(workflow_data)
|
| 165 |
+
models = extract_model_info(workflow_data)
|
| 166 |
+
|
| 167 |
+
# Get actual image dimensions instead of workflow dimensions
|
| 168 |
+
width, height = extract_image_info_from_file(image_path)
|
| 169 |
+
batch = extract_batch_size(workflow_data)
|
| 170 |
+
|
| 171 |
+
nodes = extract_nodes_info(workflow_data)
|
| 172 |
+
full_json = extract_workflow_as_json(workflow_data)
|
| 173 |
+
else:
|
| 174 |
+
error = str(workflow_data.get("error", "Unknown error"))
|
| 175 |
+
seed = steps = cfg = sampler = scheduler = denoise = positive = negative = loras = models = width = height = batch = nodes = full_json = error
|
| 176 |
+
|
| 177 |
+
return seed, steps, cfg, sampler, scheduler, denoise, \
|
| 178 |
+
positive, negative, loras, models, width, height, batch, nodes, full_json
|
| 179 |
+
|
| 180 |
+
def append_gallery(gallery: list, image: str):
|
| 181 |
+
"""Add a single image to the gallery"""
|
| 182 |
+
if gallery is None:
|
| 183 |
+
gallery = []
|
| 184 |
+
if not image:
|
| 185 |
+
return gallery, None
|
| 186 |
+
gallery.append(image)
|
| 187 |
+
return gallery, None
|
| 188 |
+
|
| 189 |
+
def extend_gallery(gallery, images):
|
| 190 |
+
"""Extend gallery preserving uniqueness"""
|
| 191 |
+
|
| 192 |
+
if gallery is None:
|
| 193 |
+
gallery = []
|
| 194 |
+
|
| 195 |
+
if not images:
|
| 196 |
+
return gallery
|
| 197 |
+
|
| 198 |
+
# Normalize input - Gradio might pass various formats
|
| 199 |
+
incoming_paths = []
|
| 200 |
+
if isinstance(images, str): # Single image path
|
| 201 |
+
incoming_paths.append(images)
|
| 202 |
+
elif isinstance(images, list):
|
| 203 |
+
for img in images:
|
| 204 |
+
# Handle cases where elements could be tuples from Gallery
|
| 205 |
+
if isinstance(img, (tuple, list)):
|
| 206 |
+
incoming_paths.append(str(img[0]))
|
| 207 |
+
else:
|
| 208 |
+
incoming_paths.append(str(img))
|
| 209 |
+
|
| 210 |
+
unique_incoming = list(set(incoming_paths)) # Avoid duplicates
|
| 211 |
+
|
| 212 |
+
seen_paths = {item[0] if isinstance(item, (list, tuple)) else item for item in gallery}
|
| 213 |
+
new_entries = [path for path in unique_incoming if path not in seen_paths]
|
| 214 |
+
|
| 215 |
+
# Create entries matching expected gallery style
|
| 216 |
+
formatted_new = [(path, '') for path in new_entries]
|
| 217 |
+
|
| 218 |
+
updated_gallery = gallery + formatted_new
|
| 219 |
+
|
| 220 |
+
return updated_gallery
|
| 221 |
+
|
| 222 |
+
def process_gallery(gallery, results_state):
|
| 223 |
+
"""Process all images and populate metadata in session."""
|
| 224 |
+
if not gallery or len(gallery) == 0:
|
| 225 |
+
# Clear results if nothing left
|
| 226 |
+
results_state.clear()
|
| 227 |
+
return EMPTY_RESULT + (results_state,)
|
| 228 |
+
|
| 229 |
+
updated_state = {}
|
| 230 |
+
first_image_result = EMPTY_RESULT
|
| 231 |
+
try:
|
| 232 |
+
for item in gallery:
|
| 233 |
+
path = item if isinstance(item, str) else item[0]
|
| 234 |
+
|
| 235 |
+
if path not in results_state:
|
| 236 |
+
res = process_single_image(path)
|
| 237 |
+
results_state[path] = res
|
| 238 |
+
updated_state[path] = res
|
| 239 |
+
|
| 240 |
+
if first_image_result == EMPTY_RESULT:
|
| 241 |
+
first_image_result = res
|
| 242 |
+
else:
|
| 243 |
+
# Already cached
|
| 244 |
+
res = results_state[path]
|
| 245 |
+
updated_state[path] = res
|
| 246 |
+
|
| 247 |
+
if first_image_result == EMPTY_RESULT:
|
| 248 |
+
first_image_result = res
|
| 249 |
+
|
| 250 |
+
results_state.update(updated_state)
|
| 251 |
+
return first_image_result + (results_state,)
|
| 252 |
+
except Exception as e:
|
| 253 |
+
print("[ERROR]", str(e))
|
| 254 |
+
return EMPTY_RESULT + (results_state,)
|
| 255 |
+
|
| 256 |
+
def get_selection_from_gallery(gallery, results_state, evt: gr.SelectData):
|
| 257 |
+
"""Fetch result for selected image in gallery."""
|
| 258 |
+
if evt is None or evt.value is None:
|
| 259 |
+
# No selection: use first image
|
| 260 |
+
if gallery and len(gallery) > 0:
|
| 261 |
+
img_path = str(gallery[0][0] if isinstance(gallery[0], (list, tuple)) else gallery[0])
|
| 262 |
+
if img_path in results_state:
|
| 263 |
+
return list(results_state[img_path])
|
| 264 |
+
else:
|
| 265 |
+
# Handle selection event
|
| 266 |
+
try:
|
| 267 |
+
selected_value = evt.value
|
| 268 |
+
img_path = None
|
| 269 |
+
|
| 270 |
+
if isinstance(selected_value, dict) and 'image' in selected_value:
|
| 271 |
+
img_path = selected_value['image']['path']
|
| 272 |
+
elif isinstance(selected_value, (list, tuple)):
|
| 273 |
+
img_path = selected_value[0]
|
| 274 |
+
else:
|
| 275 |
+
img_path = str(selected_value)
|
| 276 |
+
|
| 277 |
+
if img_path in results_state:
|
| 278 |
+
return list(results_state[img_path])
|
| 279 |
+
except Exception as e:
|
| 280 |
+
print(f"Selection error: {e}")
|
| 281 |
+
|
| 282 |
+
# Return empty if no image found
|
| 283 |
+
return list(EMPTY_RESULT)
|
| 284 |
+
# ---------- IMAGE PROCESSING ----------
|
| 285 |
+
#
|
| 286 |
+
def create_multi_comfy():
|
| 287 |
+
with gr.Blocks(css=css, fill_width=True) as demo:
|
| 288 |
+
gr.Markdown("# 🛠️ ComfyUI Workflow Information Extractor")
|
| 289 |
+
gr.Markdown("Upload Multiple ComfyUI-generated images. Extract prompts, parameters, models, and full workflows.")
|
| 290 |
+
with gr.Row():
|
| 291 |
+
with gr.Column(scale=2):
|
| 292 |
+
upload_button = gr.UploadButton(
|
| 293 |
+
"📁 Upload Multiple Images",
|
| 294 |
+
file_types=["image"],
|
| 295 |
+
file_count="multiple",
|
| 296 |
+
size='lg'
|
| 297 |
+
)
|
| 298 |
+
gallery = gr.Gallery(
|
| 299 |
+
columns=3,
|
| 300 |
+
show_share_button=False,
|
| 301 |
+
interactive=True,
|
| 302 |
+
height='auto',
|
| 303 |
+
label='Grid of images',
|
| 304 |
+
preview=False,
|
| 305 |
+
elem_id='custom-gallery'
|
| 306 |
+
)
|
| 307 |
+
with gr.Column(scale=3):
|
| 308 |
+
with gr.Tabs():
|
| 309 |
+
with gr.Tab("Sampling Parameters"):
|
| 310 |
+
with gr.Row():
|
| 311 |
+
with gr.Column():
|
| 312 |
+
seed_out = gr.Textbox(label="Seed", interactive=False, show_copy_button=True)
|
| 313 |
+
steps_out = gr.Textbox(label="Steps", interactive=False, show_copy_button=True)
|
| 314 |
+
cfg_out = gr.Textbox(label="CFG Scale", interactive=False)
|
| 315 |
+
with gr.Column():
|
| 316 |
+
sampler_out = gr.Textbox(label="Sampler", interactive=False)
|
| 317 |
+
scheduler_out = gr.Textbox(label="Scheduler", interactive=False)
|
| 318 |
+
denoise_out = gr.Textbox(label="Denoise", interactive=False)
|
| 319 |
+
|
| 320 |
+
with gr.Tab("Prompts"):
|
| 321 |
+
pos_prompt = gr.Textbox(label="Positive Prompt", lines=4, interactive=False, show_copy_button=True)
|
| 322 |
+
neg_prompt = gr.Textbox(label="Negative Prompt", lines=4, interactive=False, show_copy_button=True)
|
| 323 |
+
|
| 324 |
+
with gr.Tab("Models & LoRAs"):
|
| 325 |
+
with gr.Row():
|
| 326 |
+
lora_out = gr.Textbox(label="LoRAs", lines=5, interactive=False, show_copy_button=True)
|
| 327 |
+
model_out = gr.Textbox(label="Base Models", lines=5, interactive=False, show_copy_button=True)
|
| 328 |
+
|
| 329 |
+
with gr.Tab("Image Info"):
|
| 330 |
+
with gr.Row():
|
| 331 |
+
with gr.Column():
|
| 332 |
+
width_out = gr.Textbox(label="Width", interactive=False)
|
| 333 |
+
height_out = gr.Textbox(label="Height", interactive=False)
|
| 334 |
+
batch_out = gr.Textbox(label="Batch Size", interactive=False)
|
| 335 |
+
with gr.Column():
|
| 336 |
+
nodes_out = gr.Textbox(label="Node Counts", lines=15, interactive=True, show_copy_button=True)
|
| 337 |
+
|
| 338 |
+
with gr.Tab("Full Workflow"):
|
| 339 |
+
json_out = gr.Textbox(label="Workflow JSON", lines=20, interactive=True, show_copy_button=True)
|
| 340 |
+
|
| 341 |
+
# State to store results per image
|
| 342 |
+
results_state = gr.State({})
|
| 343 |
+
|
| 344 |
+
# Event Connections
|
| 345 |
+
upload_event = upload_button.upload(
|
| 346 |
+
fn=extend_gallery,
|
| 347 |
+
inputs=[gallery, upload_button],
|
| 348 |
+
outputs=gallery,
|
| 349 |
+
queue=False
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
upload_event.then(
|
| 353 |
+
fn=process_gallery,
|
| 354 |
+
inputs=[gallery, results_state],
|
| 355 |
+
outputs=[
|
| 356 |
+
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
|
| 357 |
+
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
|
| 358 |
+
batch_out, nodes_out, json_out, results_state
|
| 359 |
+
]
|
| 360 |
+
)
|
| 361 |
+
gallery.change(
|
| 362 |
+
fn=process_gallery,
|
| 363 |
+
inputs=[gallery, results_state],
|
| 364 |
+
outputs=[
|
| 365 |
+
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
|
| 366 |
+
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
|
| 367 |
+
batch_out, nodes_out, json_out, results_state
|
| 368 |
+
],
|
| 369 |
+
queue=True
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
gallery.select(
|
| 373 |
+
get_selection_from_gallery,
|
| 374 |
+
inputs=[gallery, results_state],
|
| 375 |
+
outputs=[
|
| 376 |
+
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
|
| 377 |
+
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
|
| 378 |
+
batch_out, nodes_out, json_out
|
| 379 |
+
]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
gr.Markdown("---\n💡 **Note:** It's under development.")
|
| 383 |
+
|
| 384 |
+
return demo
|