Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| from PIL import Image, ImageFilter, ImageDraw | |
| from huggingface_hub import snapshot_download | |
| from diffusers import FluxFillPipeline, FluxPriorReduxPipeline | |
| import math | |
| from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask | |
| import os,sys | |
| os.system("python -m pip install -e segment_anything") | |
| os.system("python -m pip install -e GroundingDINO") | |
| sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
| sys.path.append(os.path.join(os.getcwd(), "segment_anything")) | |
| os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth") | |
| os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth") | |
| import torchvision | |
| from GroundingDINO.groundingdino.util.inference import load_model | |
| from segment_anything import build_sam, SamPredictor | |
| import spaces | |
| import GroundingDINO.groundingdino.datasets.transforms as T | |
| from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
| # GroundingDINO config and checkpoint | |
| GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py" | |
| GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth" | |
| # Segment-Anything checkpoint | |
| SAM_ENCODER_VERSION = "vit_h" | |
| SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth" | |
| # Building GroundingDINO inference model | |
| groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device="cuda") | |
| # Building SAM Model and SAM Predictor | |
| sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH) | |
| sam.to(device="cuda") | |
| sam_predictor = SamPredictor(sam) | |
| def transform_image(image_pil): | |
| transform = T.Compose( | |
| [ | |
| T.RandomResize([800], max_size=1333), | |
| T.ToTensor(), | |
| T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| image, _ = transform(image_pil, None) # 3, h, w | |
| return image | |
| def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True): | |
| caption = caption.lower() | |
| caption = caption.strip() | |
| if not caption.endswith("."): | |
| caption = caption + "." | |
| with torch.no_grad(): | |
| outputs = model(image[None], captions=[caption]) | |
| logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
| boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
| logits.shape[0] | |
| # filter output | |
| logits_filt = logits.clone() | |
| boxes_filt = boxes.clone() | |
| filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
| logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
| boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
| logits_filt.shape[0] | |
| # get phrase | |
| tokenlizer = model.tokenizer | |
| tokenized = tokenlizer(caption) | |
| # build pred | |
| pred_phrases = [] | |
| scores = [] | |
| for logit, box in zip(logits_filt, boxes_filt): | |
| pred_phrase = get_phrases_from_posmap( | |
| logit > text_threshold, tokenized, tokenlizer) | |
| if with_logits: | |
| pred_phrases.append( | |
| pred_phrase + f"({str(logit.max().item())[:4]})") | |
| else: | |
| pred_phrases.append(pred_phrase) | |
| scores.append(logit.max().item()) | |
| return boxes_filt, torch.Tensor(scores), pred_phrases | |
| def get_mask(image, label): | |
| global groundingdino_model, sam_predictor | |
| image_pil = image.convert("RGB") | |
| transformed_image = transform_image(image_pil) | |
| boxes_filt, scores, pred_phrases = get_grounding_output( | |
| groundingdino_model, transformed_image, label | |
| ) | |
| size = image_pil.size | |
| # process boxes | |
| H, W = size[1], size[0] | |
| for i in range(boxes_filt.size(0)): | |
| boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
| boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
| boxes_filt[i][2:] += boxes_filt[i][:2] | |
| boxes_filt = boxes_filt.cpu() | |
| # nms | |
| nms_idx = torchvision.ops.nms( | |
| boxes_filt, scores, 0.8).numpy().tolist() | |
| boxes_filt = boxes_filt[nms_idx] | |
| pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
| image = np.array(image_pil) | |
| sam_predictor.set_image(image) | |
| transformed_boxes = sam_predictor.transform.apply_boxes_torch( | |
| boxes_filt, image.shape[:2]).to("cuda") | |
| masks, _, _ = sam_predictor.predict_torch( | |
| point_coords=None, | |
| point_labels=None, | |
| boxes=transformed_boxes, | |
| multimask_output=False, | |
| ) | |
| result_mask = masks[0][0].cpu().numpy() | |
| result_mask = Image.fromarray(result_mask) | |
| return result_mask | |
| def create_highlighted_mask(image_np, mask_np, alpha=0.5, gray_value=128): | |
| if mask_np.max() <= 1.0: | |
| mask_np = (mask_np * 255).astype(np.uint8) | |
| mask_bool = mask_np > 128 | |
| image_float = image_np.astype(np.float32) | |
| # 灰色图层 | |
| gray_overlay = np.full_like(image_float, gray_value, dtype=np.float32) | |
| # 混合 | |
| result = image_float.copy() | |
| result[mask_bool] = ( | |
| (1 - alpha) * image_float[mask_bool] + alpha * gray_overlay[mask_bool] | |
| ) | |
| return result.astype(np.uint8) | |
| hf_token = os.getenv("HF_TOKEN") | |
| snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token) | |
| snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token) | |
| snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token) | |
| dtype = torch.bfloat16 | |
| size = (768, 768) | |
| pipe = FluxFillPipeline.from_pretrained( | |
| "./FLUX.1-Fill-dev", | |
| torch_dtype=dtype | |
| ).to("cuda") | |
| pipe.load_lora_weights( | |
| "./insertanything_model/20250321_steps5000_pytorch_lora_weights.safetensors" | |
| ) | |
| redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda") | |
| ### example ##### | |
| ref_dir='./examples/ref_image' | |
| ref_mask_dir='./examples/ref_mask' | |
| image_dir='./examples/source_image' | |
| image_mask_dir='./examples/source_mask' | |
| ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] | |
| ref_list.sort() | |
| ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] | |
| ref_mask_list.sort() | |
| image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] | |
| image_list.sort() | |
| image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] | |
| image_mask_list.sort() | |
| ### example ##### | |
| def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt): | |
| if base_mask_option == "Draw Mask": | |
| tar_image = base_image["background"] | |
| tar_mask = base_image["layers"][0] | |
| else: | |
| tar_image = base_image["background"] | |
| tar_mask = base_mask["background"] | |
| if ref_mask_option == "Draw Mask": | |
| ref_image = reference_image["background"] | |
| ref_mask = reference_image["layers"][0] | |
| elif ref_mask_option == "Upload with Mask": | |
| ref_image = reference_image["background"] | |
| ref_mask = ref_mask["background"] | |
| else: | |
| ref_image = reference_image["background"] | |
| ref_mask = get_mask(ref_image, text_prompt) | |
| tar_image = tar_image.convert("RGB") | |
| tar_mask = tar_mask.convert("L") | |
| ref_image = ref_image.convert("RGB") | |
| ref_mask = ref_mask.convert("L") | |
| return_ref_mask = ref_mask.copy() | |
| tar_image = np.asarray(tar_image) | |
| tar_mask = np.asarray(tar_mask) | |
| tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) | |
| ref_image = np.asarray(ref_image) | |
| ref_mask = np.asarray(ref_mask) | |
| ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) | |
| if tar_mask.sum() == 0: | |
| raise gr.Error('No mask for the background image.Please check mask button!') | |
| if ref_mask.sum() == 0: | |
| raise gr.Error('No mask for the reference image.Please check mask button!') | |
| ref_box_yyxx = get_bbox_from_mask(ref_mask) | |
| ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) | |
| masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) | |
| y1,y2,x1,x2 = ref_box_yyxx | |
| masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] | |
| ref_mask = ref_mask[y1:y2,x1:x2] | |
| ratio = 1.3 | |
| masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) | |
| masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) | |
| kernel = np.ones((7, 7), np.uint8) | |
| iterations = 2 | |
| tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) | |
| # zome in | |
| tar_box_yyxx = get_bbox_from_mask(tar_mask) | |
| tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) | |
| tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6 | |
| tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box | |
| y1,y2,x1,x2 = tar_box_yyxx_crop | |
| old_tar_image = tar_image.copy() | |
| tar_image = tar_image[y1:y2,x1:x2,:] | |
| tar_mask = tar_mask[y1:y2,x1:x2] | |
| H1, W1 = tar_image.shape[0], tar_image.shape[1] | |
| # zome in | |
| tar_mask = pad_to_square(tar_mask, pad_value=0) | |
| tar_mask = cv2.resize(tar_mask, size) | |
| masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) | |
| pipe_prior_output = redux(Image.fromarray(masked_ref_image)) | |
| tar_image = pad_to_square(tar_image, pad_value=255) | |
| H2, W2 = tar_image.shape[0], tar_image.shape[1] | |
| tar_image = cv2.resize(tar_image, size) | |
| diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) | |
| tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1) | |
| mask_black = np.ones_like(tar_image) * 0 | |
| mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) | |
| show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych) | |
| show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar) | |
| diptych_ref_tar = Image.fromarray(diptych_ref_tar) | |
| mask_diptych[mask_diptych == 1] = 255 | |
| mask_diptych = Image.fromarray(mask_diptych) | |
| generator = torch.Generator("cuda").manual_seed(seed) | |
| edited_image = pipe( | |
| image=diptych_ref_tar, | |
| mask_image=mask_diptych, | |
| height=mask_diptych.size[1], | |
| width=mask_diptych.size[0], | |
| max_sequence_length=512, | |
| generator=generator, | |
| **pipe_prior_output, | |
| ).images[0] | |
| width, height = edited_image.size | |
| left = width // 2 | |
| right = width | |
| top = 0 | |
| bottom = height | |
| edited_image = edited_image.crop((left, top, right, bottom)) | |
| edited_image = np.array(edited_image) | |
| edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) | |
| edited_image = Image.fromarray(edited_image) | |
| if ref_mask_option != "Label to Mask": | |
| return [show_diptych_ref_tar, edited_image] | |
| else: | |
| return [return_ref_mask, show_diptych_ref_tar, edited_image] | |
| def update_ui(option): | |
| if option == "Draw Mask": | |
| return gr.update(visible=False), gr.update(visible=True) | |
| else: | |
| return gr.update(visible=True), gr.update(visible=False) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Insert-Anything") | |
| gr.Markdown("### Make sure to select the correct mask button!!") | |
| gr.Markdown("### Click the output image to toggle between Diptych and final results!!") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), | |
| layers = False, | |
| interactive=True) | |
| base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) | |
| with gr.Row(): | |
| base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask") | |
| with gr.Row(): | |
| ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"), | |
| layers = False, | |
| interactive=True) | |
| ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False) | |
| with gr.Row(): | |
| ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], label="Reference Mask Input Option", value="Upload with Mask") | |
| with gr.Row(): | |
| text_prompt = gr.Textbox(label="Label", placeholder="Enter the category of the reference object, e.g., car, dress, toy, etc.") | |
| with gr.Column(scale=1): | |
| baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=695, columns=1) | |
| with gr.Accordion("Advanced Option", open=True): | |
| seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666) | |
| gr.Markdown("### Guidelines") | |
| gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.") | |
| gr.Markdown(" Draw Mask means manually drawing a mask on the original image.") | |
| gr.Markdown(" Upload with Mask means uploading a mask file.") | |
| gr.Markdown(" Label to Mask means simply inputting a label to automatically extract the mask and obtain the result.") | |
| run_local_button = gr.Button(value="Run") | |
| # #### example ##### | |
| num_examples = len(image_list) | |
| for i in range(num_examples): | |
| with gr.Row(): | |
| if i == 0: | |
| gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1) | |
| gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1) | |
| gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1) | |
| gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1) | |
| else: | |
| gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="") | |
| gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="") | |
| gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="") | |
| gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="") | |
| if i < num_examples - 1: | |
| gr.HTML("<hr>") | |
| # #### example ##### | |
| run_local_button.click(fn=run_local, | |
| inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt], | |
| outputs=[baseline_gallery] | |
| ) | |
| demo.launch() |