WeixuanYuan's picture
Upload 66 files
ae1bdf7 verified
import gradio as gr
from data_generation.nsynth import get_nsynth_dataloader
from webUI.natural_language_guided_STFT.utils import encodeBatch2GradioOutput_STFT, InputBatch2Encode_STFT, \
latent_representation_to_Gradio_image
def get_recSTFT_module(gradioWebUI, reconstruction_state):
# Load configurations
uNet = gradioWebUI.uNet
freq_resolution, time_resolution = gradioWebUI.freq_resolution, gradioWebUI.time_resolution
VAE_scale = gradioWebUI.VAE_scale
height, width, channels = int(freq_resolution / VAE_scale), int(time_resolution / VAE_scale), gradioWebUI.channels
timesteps = gradioWebUI.timesteps
VAE_quantizer = gradioWebUI.VAE_quantizer
VAE_encoder = gradioWebUI.VAE_encoder
VAE_decoder = gradioWebUI.VAE_decoder
CLAP = gradioWebUI.CLAP
CLAP_tokenizer = gradioWebUI.CLAP_tokenizer
device = gradioWebUI.device
squared = gradioWebUI.squared
sample_rate = gradioWebUI.sample_rate
noise_strategy = gradioWebUI.noise_strategy
def generate_reconstruction_samples(sample_source, batchsize_slider, encodeCache,
reconstruction_samples):
vae_batchsize = int(batchsize_slider)
if sample_source == "text2sound_trainSTFT":
training_dataset_path = f'data/NSynth/nsynth-STFT-train-52.hdf5' # Make sure to use your actual path
iterator = get_nsynth_dataloader(training_dataset_path, batch_size=vae_batchsize, shuffle=True,
get_latent_representation=False, with_meta_data=False,
task="STFT")
elif sample_source == "text2sound_validSTFT":
training_dataset_path = f'data/NSynth/nsynth-STFT-valid-52.hdf5' # Make sure to use your actual path
iterator = get_nsynth_dataloader(training_dataset_path, batch_size=vae_batchsize, shuffle=True,
get_latent_representation=False, with_meta_data=False,
task="STFT")
elif sample_source == "text2sound_testSTFT":
training_dataset_path = f'data/NSynth/nsynth-STFT-test-52.hdf5' # Make sure to use your actual path
iterator = get_nsynth_dataloader(training_dataset_path, batch_size=vae_batchsize, shuffle=True,
get_latent_representation=False, with_meta_data=False,
task="STFT")
else:
raise NotImplementedError()
spectrogram_batch = next(iter(iterator))
origin_flipped_log_spectrums, origin_flipped_phases, origin_signals, latent_representations, quantized_latent_representations = InputBatch2Encode_STFT(
VAE_encoder, spectrogram_batch, resolution=(512, width * VAE_scale), quantizer=VAE_quantizer, squared=squared)
latent_representation_gradio_images, quantized_latent_representation_gradio_images = [], []
for i in range(vae_batchsize):
latent_representation_gradio_images.append(latent_representation_to_Gradio_image(latent_representations[i]))
quantized_latent_representation_gradio_images.append(
latent_representation_to_Gradio_image(quantized_latent_representations[i]))
if quantized_latent_representations is None:
quantized_latent_representations = latent_representations
reconstruction_flipped_log_spectrums, reconstruction_flipped_phases, reconstruction_signals, reconstruction_flipped_log_spectrums_WOA, reconstruction_flipped_phases_WOA, reconstruction_signals_WOA = encodeBatch2GradioOutput_STFT(VAE_decoder,
quantized_latent_representations,
resolution=(
512,
width * VAE_scale),
original_STFT_batch=spectrogram_batch
)
reconstruction_samples["origin_flipped_log_spectrums"] = origin_flipped_log_spectrums
reconstruction_samples["origin_flipped_phases"] = origin_flipped_phases
reconstruction_samples["origin_signals"] = origin_signals
reconstruction_samples["latent_representation_gradio_images"] = latent_representation_gradio_images
reconstruction_samples[
"quantized_latent_representation_gradio_images"] = quantized_latent_representation_gradio_images
reconstruction_samples[
"reconstruction_flipped_log_spectrums"] = reconstruction_flipped_log_spectrums
reconstruction_samples[
"reconstruction_flipped_phases"] = reconstruction_flipped_phases
reconstruction_samples["reconstruction_signals"] = reconstruction_signals
reconstruction_samples[
"reconstruction_flipped_log_spectrums_WOA"] = reconstruction_flipped_log_spectrums_WOA
reconstruction_samples[
"reconstruction_flipped_phases_WOA"] = reconstruction_flipped_phases_WOA
reconstruction_samples["reconstruction_signals_WOA"] = reconstruction_signals_WOA
reconstruction_samples["sampleRate"] = sample_rate
latent_representation_gradio_image = reconstruction_samples["latent_representation_gradio_images"][0]
quantized_latent_representation_gradio_image = \
reconstruction_samples["quantized_latent_representation_gradio_images"][0]
origin_flipped_log_spectrum = reconstruction_samples["origin_flipped_log_spectrums"][0]
origin_flipped_phase = reconstruction_samples["origin_flipped_phases"][0]
origin_signal = reconstruction_samples["origin_signals"][0]
reconstruction_flipped_log_spectrum = reconstruction_samples["reconstruction_flipped_log_spectrums"][0]
reconstruction_flipped_phase = reconstruction_samples["reconstruction_flipped_phases"][0]
reconstruction_signal = reconstruction_samples["reconstruction_signals"][0]
reconstruction_flipped_log_spectrum_WOA = reconstruction_samples["reconstruction_flipped_log_spectrums_WOA"][0]
reconstruction_flipped_phase_WOA = reconstruction_samples["reconstruction_flipped_phases_WOA"][0]
reconstruction_signal_WOA = reconstruction_samples["reconstruction_signals_WOA"][0]
return {origin_amplitude_image_output: origin_flipped_log_spectrum,
origin_phase_image_output: origin_flipped_phase,
origin_audio_output: (sample_rate, origin_signal),
latent_representation_image_output: latent_representation_gradio_image,
quantized_latent_representation_image_output: quantized_latent_representation_gradio_image,
reconstruction_amplitude_image_output: reconstruction_flipped_log_spectrum,
reconstruction_phase_image_output: reconstruction_flipped_phase,
reconstruction_audio_output: (sample_rate, reconstruction_signal),
reconstruction_amplitude_image_output_WOA: reconstruction_flipped_log_spectrum_WOA,
reconstruction_phase_image_output_WOA: reconstruction_flipped_phase_WOA,
reconstruction_audio_output_WOA: (sample_rate, reconstruction_signal_WOA),
sample_index_slider: gr.update(minimum=0, maximum=vae_batchsize - 1, value=0, step=1.0,
label="Sample index.",
info="Slide to view other samples", scale=1, visible=True),
reconstruction_state: encodeCache,
reconstruction_samples_state: reconstruction_samples}
def show_reconstruction_sample(sample_index, encodeCache_state, reconstruction_samples_state):
sample_index = int(sample_index)
sampleRate = reconstruction_samples_state["sampleRate"]
latent_representation_gradio_image = reconstruction_samples_state["latent_representation_gradio_images"][
sample_index]
quantized_latent_representation_gradio_image = \
reconstruction_samples_state["quantized_latent_representation_gradio_images"][sample_index]
origin_flipped_log_spectrum = reconstruction_samples_state["origin_flipped_log_spectrums"][sample_index]
origin_flipped_phase = reconstruction_samples_state["origin_flipped_phases"][sample_index]
origin_signal = reconstruction_samples_state["origin_signals"][sample_index]
reconstruction_flipped_log_spectrum = reconstruction_samples_state["reconstruction_flipped_log_spectrums"][
sample_index]
reconstruction_flipped_phase = reconstruction_samples_state["reconstruction_flipped_phases"][
sample_index]
reconstruction_signal = reconstruction_samples_state["reconstruction_signals"][sample_index]
reconstruction_flipped_log_spectrum_WOA = reconstruction_samples_state["reconstruction_flipped_log_spectrums_WOA"][
sample_index]
reconstruction_flipped_phase_WOA = reconstruction_samples_state["reconstruction_flipped_phases_WOA"][
sample_index]
reconstruction_signal_WOA = reconstruction_samples_state["reconstruction_signals_WOA"][sample_index]
return origin_flipped_log_spectrum, origin_flipped_phase, (sampleRate, origin_signal), \
latent_representation_gradio_image, quantized_latent_representation_gradio_image, \
reconstruction_flipped_log_spectrum, reconstruction_flipped_phase, (sampleRate, reconstruction_signal), \
reconstruction_flipped_log_spectrum_WOA, reconstruction_flipped_phase_WOA, (sampleRate, reconstruction_signal_WOA), \
encodeCache_state, reconstruction_samples_state
with gr.Tab("Reconstruction"):
reconstruction_samples_state = gr.State(value={})
gr.Markdown("Test reconstruction.")
with gr.Row(variant="panel"):
with gr.Column():
sample_source_radio = gr.Radio(
choices=["synthetic", "external", "text2sound_trainSTFT", "text2sound_testSTFT", "text2sound_validSTFT"],
value="text2sound_trainf", info="Info placeholder", scale=2)
batchsize_slider = gr.Slider(minimum=1., maximum=16., value=4., step=1.,
label="batchsize")
with gr.Column():
generate_button = gr.Button(variant="primary", value="Generate reconstruction samples", scale=1)
sample_index_slider = gr.Slider(minimum=0, maximum=3, value=0, step=1.0, label="Sample index.",
info="Slide to view other samples", scale=1, visible=False)
with gr.Row(variant="panel"):
with gr.Column():
origin_amplitude_image_output = gr.Image(label="Spectrogram", type="numpy", height=300, width=100, scale=1)
origin_phase_image_output = gr.Image(label="Phase", type="numpy", height=300, width=100, scale=1)
origin_audio_output = gr.Audio(type="numpy", label="Play the example!")
with gr.Column():
reconstruction_amplitude_image_output = gr.Image(label="Spectrogram", type="numpy", height=300, width=100, scale=1)
reconstruction_phase_image_output = gr.Image(label="Phase", type="numpy", height=300, width=100, scale=1)
reconstruction_audio_output = gr.Audio(type="numpy", label="Play the example!")
with gr.Column():
reconstruction_amplitude_image_output_WOA = gr.Image(label="Spectrogram", type="numpy", height=300, width=100, scale=1)
reconstruction_phase_image_output_WOA = gr.Image(label="Phase", type="numpy", height=300, width=100, scale=1)
reconstruction_audio_output_WOA = gr.Audio(type="numpy", label="Play the example!")
with gr.Row(variant="panel", equal_height=True):
latent_representation_image_output = gr.Image(label="latent_representation", type="numpy", height=300, width=100)
quantized_latent_representation_image_output = gr.Image(label="quantized", type="numpy", height=300, width=100)
generate_button.click(generate_reconstruction_samples,
inputs=[sample_source_radio, batchsize_slider, reconstruction_state,
reconstruction_samples_state],
outputs=[origin_amplitude_image_output, origin_phase_image_output, origin_audio_output,
latent_representation_image_output, quantized_latent_representation_image_output,
reconstruction_amplitude_image_output, reconstruction_phase_image_output, reconstruction_audio_output,
reconstruction_amplitude_image_output_WOA, reconstruction_phase_image_output_WOA, reconstruction_audio_output_WOA,
sample_index_slider, reconstruction_state, reconstruction_samples_state])
sample_index_slider.change(show_reconstruction_sample,
inputs=[sample_index_slider, reconstruction_state, reconstruction_samples_state],
outputs=[origin_amplitude_image_output, origin_phase_image_output, origin_audio_output,
latent_representation_image_output, quantized_latent_representation_image_output,
reconstruction_amplitude_image_output, reconstruction_phase_image_output, reconstruction_audio_output,
reconstruction_amplitude_image_output_WOA, reconstruction_phase_image_output_WOA, reconstruction_audio_output_WOA,
reconstruction_state, reconstruction_samples_state])