Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,134 +6,133 @@
|
|
6 |
@author: Wedyan2023
|
7 |
@email: w.s.alskaran2@gmail.com
|
8 |
"""
|
|
|
9 |
import streamlit as st
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if 'messages' not in st.session_state:
|
15 |
st.session_state.messages = []
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
st.title("Data Generation for Classification")
|
31 |
-
|
32 |
-
# Choice between Data Generation or Data Labeling
|
33 |
-
mode = st.radio("Choose Task:", ["Data Generation", "Data Labeling"])
|
34 |
-
|
35 |
-
if mode == "Data Generation":
|
36 |
-
# Step 1: Choose Classification Type
|
37 |
-
classification_type = st.radio(
|
38 |
-
"Select Classification Type:",
|
39 |
-
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
40 |
-
)
|
41 |
-
|
42 |
-
# Step 2: Choose labels based on classification type
|
43 |
if classification_type == "Sentiment Analysis":
|
44 |
-
|
|
|
|
|
|
|
45 |
elif classification_type == "Binary Classification":
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
elif classification_type == "Multi-Class Classification":
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
if domain == "Custom":
|
59 |
-
domain = st.text_input("Enter Custom Domain")
|
60 |
-
|
61 |
-
# Step 4: Specify example length (min and max words)
|
62 |
-
min_words = st.slider("Minimum Words per Example", 10, 90, 20)
|
63 |
-
max_words = st.slider("Maximum Words per Example", 10, 90, 40)
|
64 |
-
|
65 |
-
# Step 5: Ask if user wants few-shot examples
|
66 |
-
use_few_shot = st.checkbox("Use Few-Shot Examples?")
|
67 |
-
|
68 |
-
few_shot_examples = []
|
69 |
-
if use_few_shot:
|
70 |
-
num_few_shots = st.slider("Number of Few-Shot Examples (Max 5):", 1, 5, 2)
|
71 |
-
for i in range(num_few_shots):
|
72 |
-
example_text = st.text_area(f"Enter Example {i+1} Text")
|
73 |
-
example_label = st.selectbox(f"Select Label for Example {i+1}", labels)
|
74 |
-
few_shot_examples.append(f"Example: {example_text}, Label: {example_label}")
|
75 |
-
|
76 |
-
# Step 6: Specify the number of examples to generate
|
77 |
-
num_to_generate = st.number_input("Number of Examples to Generate", min_value=1, max_value=50, value=10)
|
78 |
-
|
79 |
-
# Step 7: Generate system prompt based on the inputs
|
80 |
-
system_prompt = create_system_prompt(classification_type, num_to_generate, domain, min_words, max_words, labels)
|
81 |
-
|
82 |
-
if st.button("Generate Examples"):
|
83 |
-
all_generated_examples = []
|
84 |
-
remaining_examples = num_to_generate
|
85 |
-
|
86 |
-
with st.spinner("Generating..."):
|
87 |
-
while remaining_examples > 0:
|
88 |
-
chunk_size = min(remaining_examples, 5)
|
89 |
-
try:
|
90 |
-
# Add system and user messages to session state
|
91 |
-
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
92 |
-
|
93 |
-
# Add few-shot examples to the system prompt
|
94 |
-
if few_shot_examples:
|
95 |
-
for example in few_shot_examples:
|
96 |
-
st.session_state.messages.append({"role": "user", "content": example})
|
97 |
-
|
98 |
-
# Stream API request to generate examples
|
99 |
-
stream = client.chat.completions.create(
|
100 |
-
model="gpt-3.5-turbo",
|
101 |
-
messages=[
|
102 |
-
{"role": m["role"], "content": m["content"]}
|
103 |
-
for m in st.session_state.messages
|
104 |
-
],
|
105 |
-
temperature=0.7,
|
106 |
-
stream=True,
|
107 |
-
max_tokens=3000,
|
108 |
-
)
|
109 |
-
|
110 |
-
# Capture streamed response
|
111 |
-
response = ""
|
112 |
-
for chunk in stream:
|
113 |
-
if 'content' in chunk['choices'][0]['delta']:
|
114 |
-
response += chunk['choices'][0]['delta']['content']
|
115 |
-
|
116 |
-
# Split response into individual examples by "Example: "
|
117 |
-
generated_examples = response.split("Example: ")[1:chunk_size+1] # Extract up to the chunk size
|
118 |
-
|
119 |
-
# Clean up the extracted examples
|
120 |
-
cleaned_examples = [f"Example {i+1}: {ex.strip()}" for i, ex in enumerate(generated_examples)]
|
121 |
-
|
122 |
-
# Store the new examples
|
123 |
-
all_generated_examples.extend(cleaned_examples)
|
124 |
-
remaining_examples -= chunk_size
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
st.error("Error during generation.")
|
128 |
-
st.write(e)
|
129 |
-
break
|
130 |
-
|
131 |
-
# Display all generated examples properly formatted
|
132 |
-
for idx, example in enumerate(all_generated_examples):
|
133 |
-
st.write(f"Example {idx+1}: {example.strip()}")
|
134 |
-
|
135 |
-
# Clear session state to avoid repetition of old prompts
|
136 |
-
st.session_state.messages = [] # Reset after each generation
|
137 |
|
|
|
|
|
|
|
|
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
|
|
6 |
@author: Wedyan2023
|
7 |
@email: w.s.alskaran2@gmail.com
|
8 |
"""
|
9 |
+
import numpy as np
|
10 |
import streamlit as st
|
11 |
+
from openai import OpenAI
|
12 |
+
import os
|
13 |
+
from dotenv import load_dotenv
|
14 |
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Initialize the client
|
18 |
+
client = OpenAI(
|
19 |
+
base_url="https://api-inference.huggingface.co/v1",
|
20 |
+
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
21 |
+
)
|
22 |
+
|
23 |
+
# Function to reset conversation
|
24 |
+
def reset_conversation():
|
25 |
+
st.session_state.conversation = []
|
26 |
+
st.session_state.messages = []
|
27 |
+
return None
|
28 |
+
|
29 |
+
# Initialize session state for 'messages' if it doesn't exist
|
30 |
if 'messages' not in st.session_state:
|
31 |
st.session_state.messages = []
|
32 |
|
33 |
+
# Define classification options
|
34 |
+
classification_types = ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
35 |
+
|
36 |
+
# Start with a selection between data generation or labeling
|
37 |
+
st.sidebar.write("Choose Task:")
|
38 |
+
task = st.sidebar.radio("Do you want to generate data or label data?", ("Data Generation", "Data Labeling"))
|
39 |
+
|
40 |
+
# If the user selects Data Labeling
|
41 |
+
if task == "Data Labeling":
|
42 |
+
st.sidebar.write("Choose Classification Type:")
|
43 |
+
classification_type = st.sidebar.radio("Select a classification type:", classification_types)
|
44 |
+
|
45 |
+
# Handle Sentiment Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if classification_type == "Sentiment Analysis":
|
47 |
+
st.sidebar.write("Classes: Positive, Negative, Neutral (fixed)")
|
48 |
+
class_labels = ["Positive", "Negative", "Neutral"]
|
49 |
+
|
50 |
+
# Handle Binary Classification
|
51 |
elif classification_type == "Binary Classification":
|
52 |
+
class_1 = st.sidebar.text_input("Enter Class 1:")
|
53 |
+
class_2 = st.sidebar.text_input("Enter Class 2:")
|
54 |
+
class_labels = [class_1, class_2]
|
55 |
+
|
56 |
+
# Handle Multi-Class Classification
|
57 |
elif classification_type == "Multi-Class Classification":
|
58 |
+
class_labels = []
|
59 |
+
for i in range(1, 11): # Allow up to 10 classes
|
60 |
+
label = st.sidebar.text_input(f"Enter Class {i} (leave blank to stop):")
|
61 |
+
if label:
|
62 |
+
class_labels.append(label)
|
63 |
+
else:
|
64 |
+
break
|
65 |
+
|
66 |
+
# Domain selection
|
67 |
+
st.sidebar.write("Specify the Domain:")
|
68 |
+
domain = st.sidebar.radio("Choose a domain:", ("Restaurant Reviews", "E-commerce Reviews", "Custom"))
|
69 |
if domain == "Custom":
|
70 |
+
domain = st.sidebar.text_input("Enter Custom Domain:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Specify example length
|
73 |
+
st.sidebar.write("Specify the Length of Examples:")
|
74 |
+
min_words = st.sidebar.number_input("Minimum word count (10 to 90):", 10, 90, 10)
|
75 |
+
max_words = st.sidebar.number_input("Maximum word count (10 to 90):", min_words, 90, 50)
|
76 |
|
77 |
+
# Few-shot examples option
|
78 |
+
use_few_shot = st.sidebar.radio("Do you want to use few-shot examples?", ("Yes", "No"))
|
79 |
+
few_shot_examples = []
|
80 |
+
if use_few_shot == "Yes":
|
81 |
+
num_examples = st.sidebar.number_input("How many few-shot examples? (1 to 5)", 1, 5, 1)
|
82 |
+
for i in range(num_examples):
|
83 |
+
example_text = st.text_area(f"Enter example {i+1}:")
|
84 |
+
example_label = st.selectbox(f"Select the label for example {i+1}:", class_labels)
|
85 |
+
few_shot_examples.append({"text": example_text, "label": example_label})
|
86 |
+
|
87 |
+
# Generate the system prompt based on classification type
|
88 |
+
if classification_type == "Sentiment Analysis":
|
89 |
+
system_prompt = f"You are a propositional sentiment analysis expert. Your role is to generate sentiment analysis reviews based on the data entered and few-shot examples provided, if any, for the domain '{domain}'."
|
90 |
+
elif classification_type == "Binary Classification":
|
91 |
+
system_prompt = f"You are an expert in binary classification. Your task is to label examples for the domain '{domain}' with either '{class_1}' or '{class_2}', based on the data provided."
|
92 |
+
else: # Multi-Class Classification
|
93 |
+
system_prompt = f"You are an expert in multi-class classification. Your role is to label examples for the domain '{domain}' using the provided class labels."
|
94 |
+
|
95 |
+
st.sidebar.write("System Prompt:")
|
96 |
+
st.sidebar.write(system_prompt)
|
97 |
+
|
98 |
+
# Step-by-step thinking
|
99 |
+
st.sidebar.write("Generated Data:")
|
100 |
+
st.sidebar.write("Think step by step to ensure accuracy in classification.")
|
101 |
+
|
102 |
+
# Accept user input for generating or labeling data
|
103 |
+
if prompt := st.chat_input(f"Hi, I'm ready to help with {classification_type} for {domain}. Ask me a question or provide data to classify."):
|
104 |
+
|
105 |
+
# Display user message in chat message container
|
106 |
+
with st.chat_message("user"):
|
107 |
+
st.markdown(prompt)
|
108 |
+
# Add user message to chat history
|
109 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
110 |
+
|
111 |
+
# Display assistant response in chat message container
|
112 |
+
with st.chat_message("assistant"):
|
113 |
+
|
114 |
+
try:
|
115 |
+
# Stream the response from the model
|
116 |
+
stream = client.chat.completions.create(
|
117 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
118 |
+
messages=[
|
119 |
+
{"role": m["role"], "content": m["content"]}
|
120 |
+
for m in st.session_state.messages
|
121 |
+
],
|
122 |
+
temperature=0.5,
|
123 |
+
stream=True,
|
124 |
+
max_tokens=3000,
|
125 |
+
)
|
126 |
+
|
127 |
+
response = st.write_stream(stream)
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
response = "😵💫 Something went wrong. Try again later."
|
131 |
+
st.write(response)
|
132 |
+
|
133 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
134 |
+
|
135 |
+
# If the user selects Data Generation
|
136 |
+
else:
|
137 |
+
st.sidebar.write("This feature will allow you to generate new data. Coming soon!")
|
138 |
|