WebashalarForML
commited on
Update backup/backup.py
Browse files- backup/backup.py +75 -75
backup/backup.py
CHANGED
@@ -1,75 +1,75 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
# Initialize GLiNER with the base model
|
4 |
-
model = GLiNER.from_pretrained("urchade/gliner_mediumv2.1")
|
5 |
-
|
6 |
-
# Sample text for entity prediction
|
7 |
-
text = """
|
8 |
-
lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
|
9 |
-
|
10 |
-
# Labels for entity prediction
|
11 |
-
# # Most GLiNER models should work best when entity types are in lower case or title case
|
12 |
-
# labels = ["Person", "Mail", "Number", "Address", "Organization","Designation"]
|
13 |
-
|
14 |
-
# # Perform entity prediction
|
15 |
-
# entities = model.predict_entities(text, labels, threshold=0.5)
|
16 |
-
|
17 |
-
|
18 |
-
def NER_Model(text):
|
19 |
-
|
20 |
-
labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
|
21 |
-
|
22 |
-
# Perform entity prediction
|
23 |
-
entities = model.predict_entities(text, labels, threshold=0.5)
|
24 |
-
|
25 |
-
# Initialize the processed data dictionary
|
26 |
-
processed_data = {
|
27 |
-
"Name": [],
|
28 |
-
"Contact": [],
|
29 |
-
"Designation": [],
|
30 |
-
"Address": [],
|
31 |
-
"Link": [],
|
32 |
-
"Company": [],
|
33 |
-
"Email": [],
|
34 |
-
"extracted_text": "",
|
35 |
-
}
|
36 |
-
|
37 |
-
for entity in entities:
|
38 |
-
|
39 |
-
print(entity["text"], "=>", entity["label"])
|
40 |
-
|
41 |
-
#loading the data into json
|
42 |
-
if entity["label"]==labels[0]:
|
43 |
-
processed_data['Name'].extend([entity["text"]])
|
44 |
-
|
45 |
-
if entity["label"]==labels[1]:
|
46 |
-
processed_data['Email'].extend([entity["text"]])
|
47 |
-
|
48 |
-
if entity["label"]==labels[2]:
|
49 |
-
processed_data['Contact'].extend([entity["text"]])
|
50 |
-
|
51 |
-
if entity["label"]==labels[3]:
|
52 |
-
processed_data['Address'].extend([entity["text"]])
|
53 |
-
|
54 |
-
if entity["label"]==labels[4]:
|
55 |
-
processed_data['Company'].extend([entity["text"]])
|
56 |
-
|
57 |
-
if entity["label"]==labels[5]:
|
58 |
-
processed_data['Designation'].extend([entity["text"]])
|
59 |
-
|
60 |
-
if entity["label"]==labels[6]:
|
61 |
-
processed_data['Link'].extend([entity["text"]])
|
62 |
-
|
63 |
-
|
64 |
-
processed_data['Address']=[', '.join(processed_data['Address'])]
|
65 |
-
processed_data['extracted_text']=[text]
|
66 |
-
|
67 |
-
return processed_data
|
68 |
-
|
69 |
-
# result=NER_Model(text)
|
70 |
-
# print(result)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
1 |
+
from model import GLiNER
|
2 |
+
|
3 |
+
# Initialize GLiNER with the base model
|
4 |
+
model = GLiNER.from_pretrained("urchade/gliner_mediumv2.1")
|
5 |
+
|
6 |
+
# Sample text for entity prediction
|
7 |
+
text = """
|
8 |
+
lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
|
9 |
+
|
10 |
+
# Labels for entity prediction
|
11 |
+
# # Most GLiNER models should work best when entity types are in lower case or title case
|
12 |
+
# labels = ["Person", "Mail", "Number", "Address", "Organization","Designation"]
|
13 |
+
|
14 |
+
# # Perform entity prediction
|
15 |
+
# entities = model.predict_entities(text, labels, threshold=0.5)
|
16 |
+
|
17 |
+
|
18 |
+
def NER_Model(text):
|
19 |
+
|
20 |
+
labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
|
21 |
+
|
22 |
+
# Perform entity prediction
|
23 |
+
entities = model.predict_entities(text, labels, threshold=0.5)
|
24 |
+
|
25 |
+
# Initialize the processed data dictionary
|
26 |
+
processed_data = {
|
27 |
+
"Name": [],
|
28 |
+
"Contact": [],
|
29 |
+
"Designation": [],
|
30 |
+
"Address": [],
|
31 |
+
"Link": [],
|
32 |
+
"Company": [],
|
33 |
+
"Email": [],
|
34 |
+
"extracted_text": "",
|
35 |
+
}
|
36 |
+
|
37 |
+
for entity in entities:
|
38 |
+
|
39 |
+
print(entity["text"], "=>", entity["label"])
|
40 |
+
|
41 |
+
#loading the data into json
|
42 |
+
if entity["label"]==labels[0]:
|
43 |
+
processed_data['Name'].extend([entity["text"]])
|
44 |
+
|
45 |
+
if entity["label"]==labels[1]:
|
46 |
+
processed_data['Email'].extend([entity["text"]])
|
47 |
+
|
48 |
+
if entity["label"]==labels[2]:
|
49 |
+
processed_data['Contact'].extend([entity["text"]])
|
50 |
+
|
51 |
+
if entity["label"]==labels[3]:
|
52 |
+
processed_data['Address'].extend([entity["text"]])
|
53 |
+
|
54 |
+
if entity["label"]==labels[4]:
|
55 |
+
processed_data['Company'].extend([entity["text"]])
|
56 |
+
|
57 |
+
if entity["label"]==labels[5]:
|
58 |
+
processed_data['Designation'].extend([entity["text"]])
|
59 |
+
|
60 |
+
if entity["label"]==labels[6]:
|
61 |
+
processed_data['Link'].extend([entity["text"]])
|
62 |
+
|
63 |
+
|
64 |
+
processed_data['Address']=[', '.join(processed_data['Address'])]
|
65 |
+
processed_data['extracted_text']=[text]
|
66 |
+
|
67 |
+
return processed_data
|
68 |
+
|
69 |
+
# result=NER_Model(text)
|
70 |
+
# print(result)
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|