eloiselle
modified requirements
955611c
raw
history blame
844 Bytes
import gradio as gr
from nudenetupdated import NudeDetector
detector = NudeDetector()
def predict(image, checkbox):
if checkbox:
mode = "fast"
else:
mode = "default"
try:
result = detector.detect(image, mode)
sections = []
for i in range(len(result)):
print()
sections.append((
result[i]['box'],
result[i]['label']
))
output = (image, sections)
return (output, result)
except Exception as e:
print(f"Got uncaught exception {type(e)}: {e}")
gr.Interface(
fn=predict,
inputs=[
gr.Image(),
gr.Checkbox(label="Fast"),
],
outputs=[
gr.AnnotatedImage(label="Annotated Image"),
gr.JSON(label="JSON")
]
).launch(server_name="0.0.0.0")