Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +62 -0
- model (1).joblib +3 -0
- requirements.txt +5 -0
- unique_values (1).joblib +3 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
ANAE_DIC = {'NO': 0, 'YES': 1}
|
6 |
+
DIA_DIC = {'NO': 0, 'YES': 1}
|
7 |
+
HIGHBLOOD_DIC = {'NO': 0, 'YES': 1}
|
8 |
+
SMOKE_DIC = {'NO': 0, 'YES': 1}
|
9 |
+
DEATH_DIC = {'NO': 0, 'YES': 1}
|
10 |
+
|
11 |
+
model = joblib.load('model (1).joblib')
|
12 |
+
unique_values = joblib.load('unique_values (1).joblib')
|
13 |
+
|
14 |
+
unique_age = unique_values["age"]
|
15 |
+
unique_anaemia = unique_values["anaemia"]
|
16 |
+
unique_creatinine = unique_values["creatinine_phosphokinase"]
|
17 |
+
unique_diabetes = unique_values["diabetes"]
|
18 |
+
unique_ejection = unique_values["ejection_fraction"]
|
19 |
+
unique_high_blood = unique_values["high_blood_pressure"]
|
20 |
+
unique_platelets = unique_values["platelets"]
|
21 |
+
unique_serum_creatinine = unique_values["serum_creatinine"]
|
22 |
+
unique_serum_sodium = unique_values["serum_sodium"]
|
23 |
+
unique_sex = unique_values["sex"]
|
24 |
+
unique_smoking = unique_values["smoking"]
|
25 |
+
unique_time = unique_values["time"]
|
26 |
+
|
27 |
+
def main():
|
28 |
+
st.title("Adult Income Analysis")
|
29 |
+
|
30 |
+
with st.form("questionaire"):
|
31 |
+
age = st.slider("Age", min_value=10, max_value=100)
|
32 |
+
anaemia = st.selectbox("Anaemia", unique_anaemia)
|
33 |
+
creatinine = st.slider("Creatinine", min_value=10, max_value=10000)
|
34 |
+
diabetes = st.selectbox("Diabetes", unique_diabetes)
|
35 |
+
ejection = st.slider("Ejection(Percent)", min_value=1, max_value=100)
|
36 |
+
high_blood = st.selectbox("High blood pressure", unique_high_blood)
|
37 |
+
platelets = st.slider("Platelets", min_value=10000, max_value=1000000)
|
38 |
+
serum_creatinine = st.slider("Serum creatinine", min_value=0, max_value=10)
|
39 |
+
sodium = st.slider("Serum Sodium", min_value=100, max_value=200)
|
40 |
+
sex = st.selectbox("Sex", unique_sex)
|
41 |
+
smoking = st.selectbox("Smoke", unique_smoking)
|
42 |
+
time = st.slider("Time", min_value=10, max_value=100)
|
43 |
+
|
44 |
+
clicked = st.form_submit_button("Predict income")
|
45 |
+
if clicked:
|
46 |
+
result=model.predict(pd.DataFrame({"age": [age],
|
47 |
+
"anaemia": [ANAE_DIC[anaemia]],
|
48 |
+
"creatinine": [creatinine],
|
49 |
+
"diabetes": [DIA_DIC[diabetes]],
|
50 |
+
"ejection": [ejection],
|
51 |
+
"high_blood": [HIGHBLOOD_DIC[high_blood]],
|
52 |
+
"platelets": [platelets],
|
53 |
+
"serum_creatinine": [serum_creatinine],
|
54 |
+
"serum_sodium": [sodium],
|
55 |
+
"sex": [sex],
|
56 |
+
"smoking": [SMOKE_DIC[smoking]],
|
57 |
+
"time": [time]}))
|
58 |
+
result = 'No' if result[0] == 1 else 'Yes'
|
59 |
+
st.success('The predicted Death event is {}'.format(result))
|
60 |
+
|
61 |
+
if __name__=='__main__':
|
62 |
+
main()
|
model (1).joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26bca3537397b211972d4d035852111c6eb103e05e7a8eae7d3125dd016c8899
|
3 |
+
size 126025
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
pandas
|
3 |
+
scikit-learn==1.2.2
|
4 |
+
xgboost==1.7.6
|
5 |
+
altair<5
|
unique_values (1).joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48cb7c8db3b026991810ab071fd1bce2acbe3bc66d4c527696061eb48003570a
|
3 |
+
size 544
|