Spaces:
Sleeping
Sleeping
Waseem7711
commited on
Update.app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,93 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from langchain_core.output_parsers import StrOutputParser
|
4 |
-
from langchain_community.llms import Ollama
|
5 |
import streamlit as st
|
|
|
|
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
-
#
|
13 |
-
os.
|
14 |
-
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
15 |
-
|
16 |
-
# Prompt Template
|
17 |
-
prompt = ChatPromptTemplate.from_messages(
|
18 |
-
[
|
19 |
-
("system", "You are a helpful assistant. Please respond to the user queries"),
|
20 |
-
("user", "Question: {question}")
|
21 |
-
]
|
22 |
-
)
|
23 |
|
24 |
# Streamlit app setup
|
25 |
-
st.title('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# User input
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
|
|
|
|
3 |
import streamlit as st
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
+
# Retrieve Hugging Face API token from environment variables (if accessing private models)
|
13 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Ensure you set this in Hugging Face Secrets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Streamlit app setup
|
16 |
+
st.title('Llama2 Chatbot Deployment on Hugging Face Spaces')
|
17 |
+
st.write("This chatbot is powered by the Llama2 model. Ask me anything!")
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_model():
|
21 |
+
"""
|
22 |
+
Load the tokenizer and model from Hugging Face.
|
23 |
+
This function is cached to prevent re-loading on every interaction.
|
24 |
+
"""
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
27 |
+
use_auth_token=HF_API_TOKEN # Remove if the model is public
|
28 |
+
)
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
31 |
+
torch_dtype=torch.float16, # Use float16 for reduced memory usage
|
32 |
+
device_map="auto",
|
33 |
+
use_auth_token=HF_API_TOKEN # Remove if the model is public
|
34 |
+
)
|
35 |
+
return tokenizer, model
|
36 |
+
|
37 |
+
# Load the model and tokenizer
|
38 |
+
tokenizer, model = load_model()
|
39 |
+
|
40 |
+
# Initialize session state for conversation history
|
41 |
+
if "conversation" not in st.session_state:
|
42 |
+
st.session_state.conversation = []
|
43 |
|
44 |
# User input
|
45 |
+
user_input = st.text_input("You:", "")
|
46 |
+
|
47 |
+
if user_input:
|
48 |
+
st.session_state.conversation.append({"role": "user", "content": user_input})
|
49 |
+
with st.spinner("Generating response..."):
|
50 |
+
try:
|
51 |
+
# Prepare the conversation history for the model
|
52 |
+
conversation_text = ""
|
53 |
+
for message in st.session_state.conversation:
|
54 |
+
if message["role"] == "user":
|
55 |
+
conversation_text += f"User: {message['content']}\n"
|
56 |
+
elif message["role"] == "assistant":
|
57 |
+
conversation_text += f"Assistant: {message['content']}\n"
|
58 |
+
|
59 |
+
# Encode the input
|
60 |
+
inputs = tokenizer.encode(conversation_text + "Assistant:", return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
# Generate a response
|
63 |
+
output = model.generate(
|
64 |
+
inputs,
|
65 |
+
max_length=1000,
|
66 |
+
temperature=0.7,
|
67 |
+
top_p=0.9,
|
68 |
+
do_sample=True,
|
69 |
+
eos_token_id=tokenizer.eos_token_id,
|
70 |
+
pad_token_id=tokenizer.eos_token_id # To avoid warnings
|
71 |
+
)
|
72 |
+
|
73 |
+
# Decode the response
|
74 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Extract the assistant's reply
|
77 |
+
assistant_reply = response[len(conversation_text + "Assistant: "):].strip()
|
78 |
+
|
79 |
+
# Append the assistant's reply to the conversation history
|
80 |
+
st.session_state.conversation.append({"role": "assistant", "content": assistant_reply})
|
81 |
+
|
82 |
+
# Display the updated conversation
|
83 |
+
conversation_display = ""
|
84 |
+
for message in st.session_state.conversation:
|
85 |
+
if message["role"] == "user":
|
86 |
+
conversation_display += f"**You:** {message['content']}\n\n"
|
87 |
+
elif message["role"] == "assistant":
|
88 |
+
conversation_display += f"**Bot:** {message['content']}\n\n"
|
89 |
+
|
90 |
+
st.markdown(conversation_display)
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"An error occurred: {e}")
|