AVA-Ollama / app.py
Warlord-K's picture
Create app.py
cb10e0f verified
model_name = "qwen:0.5b-chat"
import os
os.system("sudo apt install lshw")
os.system("curl https://ollama.ai/install.sh | sh")
import nest_asyncio
nest_asyncio.apply()
import os
import asyncio
# Run Async Ollama
# Taken from: https://stackoverflow.com/questions/77697302/how-to-run-ollama-in-google-colab
# NB: You may need to set these depending and get cuda working depending which backend you are running.
# Set environment variable for NVIDIA library
# Set environment variables for CUDA
os.environ['PATH'] += ':/usr/local/cuda/bin'
# Set LD_LIBRARY_PATH to include both /usr/lib64-nvidia and CUDA lib directories
os.environ['LD_LIBRARY_PATH'] = '/usr/lib64-nvidia:/usr/local/cuda/lib64'
async def run_process(cmd):
print('>>> starting', *cmd)
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
# define an async pipe function
async def pipe(lines):
async for line in lines:
print(line.decode().strip())
await asyncio.gather(
pipe(process.stdout),
pipe(process.stderr),
)
# call it
await asyncio.gather(pipe(process.stdout), pipe(process.stderr))
import asyncio
import threading
async def start_ollama_serve():
await run_process(['ollama', 'serve'])
def run_async_in_thread(loop, coro):
asyncio.set_event_loop(loop)
loop.run_until_complete(coro)
loop.close()
# Create a new event loop that will run in a new thread
new_loop = asyncio.new_event_loop()
# Start ollama serve in a separate thread so the cell won't block execution
thread = threading.Thread(target=run_async_in_thread, args=(new_loop, start_ollama_serve()))
thread.start()
# Load up model
os.system(f"ollama pull {model_name}")
# Download Data
os.system("wget -O data.txt https://drive.google.com/uc?id=1uMvEYq17LsvTkX8bU5Fq-2FcG16XbrAW")
from llama_index import SimpleDirectoryReader
from llama_index import Document
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import (
SimpleDirectoryReader,
VectorStoreIndex,
ServiceContext,
)
from llama_index.llms import Ollama
from llama_index import ServiceContext, VectorStoreIndex, StorageContext
from llama_index.indices.postprocessor import SentenceTransformerRerank
from llama_index import load_index_from_storage
from llama_index.node_parser import HierarchicalNodeParser
from llama_index.node_parser import get_leaf_nodes
from llama_index import StorageContext
from llama_index.retrievers import AutoMergingRetriever
from llama_index.indices.postprocessor import SentenceTransformerRerank
from llama_index.query_engine import RetrieverQueryEngine
import gradio as gr
import os
from llama_index import get_response_synthesizer
from llama_index.chat_engine.condense_question import (
CondenseQuestionChatEngine,
)
from llama_index import set_global_service_context
def build_automerging_index(
documents,
llm,
embed_model,
save_dir="merging_index",
chunk_sizes=None,
):
chunk_sizes = chunk_sizes or [2048, 512, 128]
node_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=chunk_sizes)
nodes = node_parser.get_nodes_from_documents(documents)
leaf_nodes = get_leaf_nodes(nodes)
merging_context = ServiceContext.from_defaults(
llm=llm,
embed_model=embed_model,
)
set_global_service_context(merging_context)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
if not os.path.exists(save_dir):
automerging_index = VectorStoreIndex(
leaf_nodes, storage_context=storage_context, service_context=merging_context
)
automerging_index.storage_context.persist(persist_dir=save_dir)
else:
automerging_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=save_dir),
service_context=merging_context,
)
return automerging_index
def get_automerging_query_engine(
automerging_index,
similarity_top_k=5,
rerank_top_n=2,
):
base_retriever = automerging_index.as_retriever(similarity_top_k=similarity_top_k)
retriever = AutoMergingRetriever(
base_retriever, automerging_index.storage_context, verbose=True
)
rerank = SentenceTransformerRerank(
top_n=rerank_top_n, model="BAAI/bge-reranker-base"
)
synth = get_response_synthesizer(streaming=True)
auto_merging_engine = RetrieverQueryEngine.from_args(
retriever, node_postprocessors=[rerank],response_synthesizer=synth
)
return auto_merging_engine
llm = Ollama(model=model_name, request_timeout=300.0)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
documents = SimpleDirectoryReader(
input_files=["data.txt"]
).load_data()
automerging_index = build_automerging_index(
documents,
llm,
embed_model=embed_model,
save_dir="merging_index"
)
automerging_query_engine = get_automerging_query_engine(
automerging_index,
)
automerging_chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=automerging_query_engine,
)
def chat(message, history):
res = automerging_chat_engine.stream_chat(message)
response = ""
for text in res.response_gen:
response+=text
yield response
demo = gr.ChatInterface(chat)
demo.launch()