Spaces:
Runtime error
Runtime error
model_name = "qwen:0.5b-chat" | |
import os | |
os.system("sudo apt install lshw") | |
os.system("curl https://ollama.ai/install.sh | sh") | |
import nest_asyncio | |
nest_asyncio.apply() | |
import os | |
import asyncio | |
# Run Async Ollama | |
# Taken from: https://stackoverflow.com/questions/77697302/how-to-run-ollama-in-google-colab | |
# NB: You may need to set these depending and get cuda working depending which backend you are running. | |
# Set environment variable for NVIDIA library | |
# Set environment variables for CUDA | |
os.environ['PATH'] += ':/usr/local/cuda/bin' | |
# Set LD_LIBRARY_PATH to include both /usr/lib64-nvidia and CUDA lib directories | |
os.environ['LD_LIBRARY_PATH'] = '/usr/lib64-nvidia:/usr/local/cuda/lib64' | |
async def run_process(cmd): | |
print('>>> starting', *cmd) | |
process = await asyncio.create_subprocess_exec( | |
*cmd, | |
stdout=asyncio.subprocess.PIPE, | |
stderr=asyncio.subprocess.PIPE | |
) | |
# define an async pipe function | |
async def pipe(lines): | |
async for line in lines: | |
print(line.decode().strip()) | |
await asyncio.gather( | |
pipe(process.stdout), | |
pipe(process.stderr), | |
) | |
# call it | |
await asyncio.gather(pipe(process.stdout), pipe(process.stderr)) | |
import asyncio | |
import threading | |
async def start_ollama_serve(): | |
await run_process(['ollama', 'serve']) | |
def run_async_in_thread(loop, coro): | |
asyncio.set_event_loop(loop) | |
loop.run_until_complete(coro) | |
loop.close() | |
# Create a new event loop that will run in a new thread | |
new_loop = asyncio.new_event_loop() | |
# Start ollama serve in a separate thread so the cell won't block execution | |
thread = threading.Thread(target=run_async_in_thread, args=(new_loop, start_ollama_serve())) | |
thread.start() | |
# Load up model | |
os.system(f"ollama pull {model_name}") | |
# Download Data | |
os.system("wget -O data.txt https://drive.google.com/uc?id=1uMvEYq17LsvTkX8bU5Fq-2FcG16XbrAW") | |
from llama_index import SimpleDirectoryReader | |
from llama_index import Document | |
from llama_index.embeddings import HuggingFaceEmbedding | |
from llama_index import ( | |
SimpleDirectoryReader, | |
VectorStoreIndex, | |
ServiceContext, | |
) | |
from llama_index.llms import Ollama | |
from llama_index import ServiceContext, VectorStoreIndex, StorageContext | |
from llama_index.indices.postprocessor import SentenceTransformerRerank | |
from llama_index import load_index_from_storage | |
from llama_index.node_parser import HierarchicalNodeParser | |
from llama_index.node_parser import get_leaf_nodes | |
from llama_index import StorageContext | |
from llama_index.retrievers import AutoMergingRetriever | |
from llama_index.indices.postprocessor import SentenceTransformerRerank | |
from llama_index.query_engine import RetrieverQueryEngine | |
import gradio as gr | |
import os | |
from llama_index import get_response_synthesizer | |
from llama_index.chat_engine.condense_question import ( | |
CondenseQuestionChatEngine, | |
) | |
from llama_index import set_global_service_context | |
def build_automerging_index( | |
documents, | |
llm, | |
embed_model, | |
save_dir="merging_index", | |
chunk_sizes=None, | |
): | |
chunk_sizes = chunk_sizes or [2048, 512, 128] | |
node_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=chunk_sizes) | |
nodes = node_parser.get_nodes_from_documents(documents) | |
leaf_nodes = get_leaf_nodes(nodes) | |
merging_context = ServiceContext.from_defaults( | |
llm=llm, | |
embed_model=embed_model, | |
) | |
set_global_service_context(merging_context) | |
storage_context = StorageContext.from_defaults() | |
storage_context.docstore.add_documents(nodes) | |
if not os.path.exists(save_dir): | |
automerging_index = VectorStoreIndex( | |
leaf_nodes, storage_context=storage_context, service_context=merging_context | |
) | |
automerging_index.storage_context.persist(persist_dir=save_dir) | |
else: | |
automerging_index = load_index_from_storage( | |
StorageContext.from_defaults(persist_dir=save_dir), | |
service_context=merging_context, | |
) | |
return automerging_index | |
def get_automerging_query_engine( | |
automerging_index, | |
similarity_top_k=5, | |
rerank_top_n=2, | |
): | |
base_retriever = automerging_index.as_retriever(similarity_top_k=similarity_top_k) | |
retriever = AutoMergingRetriever( | |
base_retriever, automerging_index.storage_context, verbose=True | |
) | |
rerank = SentenceTransformerRerank( | |
top_n=rerank_top_n, model="BAAI/bge-reranker-base" | |
) | |
synth = get_response_synthesizer(streaming=True) | |
auto_merging_engine = RetrieverQueryEngine.from_args( | |
retriever, node_postprocessors=[rerank],response_synthesizer=synth | |
) | |
return auto_merging_engine | |
llm = Ollama(model=model_name, request_timeout=300.0) | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") | |
documents = SimpleDirectoryReader( | |
input_files=["data.txt"] | |
).load_data() | |
automerging_index = build_automerging_index( | |
documents, | |
llm, | |
embed_model=embed_model, | |
save_dir="merging_index" | |
) | |
automerging_query_engine = get_automerging_query_engine( | |
automerging_index, | |
) | |
automerging_chat_engine = CondenseQuestionChatEngine.from_defaults( | |
query_engine=automerging_query_engine, | |
) | |
def chat(message, history): | |
res = automerging_chat_engine.stream_chat(message) | |
response = "" | |
for text in res.response_gen: | |
response+=text | |
yield response | |
demo = gr.ChatInterface(chat) | |
demo.launch() |