|
from typing import Any, cast |
|
|
|
import numpy as np |
|
import torch |
|
from numpy.typing import NDArray |
|
from pyopenjtalk import OpenJTalk |
|
from torch.overrides import TorchFunctionMode |
|
from torch.utils import _device |
|
|
|
from style_bert_vits2.constants import Languages |
|
from style_bert_vits2.logging import logger |
|
from style_bert_vits2.models import commons, utils |
|
from style_bert_vits2.models.hyper_parameters import HyperParameters |
|
from style_bert_vits2.models.models import SynthesizerTrn |
|
from style_bert_vits2.models.models_jp_extra import ( |
|
SynthesizerTrn as SynthesizerTrnJPExtra, |
|
) |
|
from style_bert_vits2.nlp import ( |
|
clean_text_with_given_phone_tone, |
|
cleaned_text_to_sequence, |
|
extract_bert_feature, |
|
) |
|
from style_bert_vits2.nlp.symbols import SYMBOLS |
|
|
|
|
|
class EmptyInitOnDevice(TorchFunctionMode): |
|
def __init__(self, device=None): |
|
self.device = device |
|
|
|
def __torch_function__(self, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if getattr(func, "__module__", None) == "torch.nn.init": |
|
if "tensor" in kwargs: |
|
return kwargs["tensor"] |
|
else: |
|
return args[0] |
|
if ( |
|
self.device is not None |
|
and func in _device._device_constructors() |
|
and kwargs.get("device") is None |
|
): |
|
kwargs["device"] = self.device |
|
return func(*args, **kwargs) |
|
|
|
|
|
def get_net_g( |
|
model_path: str, version: str, device: str, hps: HyperParameters |
|
) -> SynthesizerTrn | SynthesizerTrnJPExtra: |
|
with EmptyInitOnDevice(device): |
|
if version.endswith("JP-Extra"): |
|
logger.info("Using JP-Extra model") |
|
net_g = SynthesizerTrnJPExtra( |
|
n_vocab=len(SYMBOLS), |
|
spec_channels=hps.data.filter_length // 2 + 1, |
|
segment_size=hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
|
|
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, |
|
use_noise_scaled_mas=hps.model.use_noise_scaled_mas, |
|
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, |
|
use_duration_discriminator=hps.model.use_duration_discriminator, |
|
use_wavlm_discriminator=hps.model.use_wavlm_discriminator, |
|
inter_channels=hps.model.inter_channels, |
|
hidden_channels=hps.model.hidden_channels, |
|
filter_channels=hps.model.filter_channels, |
|
n_heads=hps.model.n_heads, |
|
n_layers=hps.model.n_layers, |
|
kernel_size=hps.model.kernel_size, |
|
p_dropout=hps.model.p_dropout, |
|
resblock=hps.model.resblock, |
|
resblock_kernel_sizes=hps.model.resblock_kernel_sizes, |
|
resblock_dilation_sizes=hps.model.resblock_dilation_sizes, |
|
upsample_rates=hps.model.upsample_rates, |
|
upsample_initial_channel=hps.model.upsample_initial_channel, |
|
upsample_kernel_sizes=hps.model.upsample_kernel_sizes, |
|
n_layers_q=hps.model.n_layers_q, |
|
use_spectral_norm=hps.model.use_spectral_norm, |
|
gin_channels=hps.model.gin_channels, |
|
slm=hps.model.slm, |
|
).to(device) |
|
else: |
|
logger.info("Using normal model") |
|
net_g = SynthesizerTrn( |
|
n_vocab=len(SYMBOLS), |
|
spec_channels=hps.data.filter_length // 2 + 1, |
|
segment_size=hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
|
|
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, |
|
use_noise_scaled_mas=hps.model.use_noise_scaled_mas, |
|
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, |
|
use_duration_discriminator=hps.model.use_duration_discriminator, |
|
use_wavlm_discriminator=hps.model.use_wavlm_discriminator, |
|
inter_channels=hps.model.inter_channels, |
|
hidden_channels=hps.model.hidden_channels, |
|
filter_channels=hps.model.filter_channels, |
|
n_heads=hps.model.n_heads, |
|
n_layers=hps.model.n_layers, |
|
kernel_size=hps.model.kernel_size, |
|
p_dropout=hps.model.p_dropout, |
|
resblock=hps.model.resblock, |
|
resblock_kernel_sizes=hps.model.resblock_kernel_sizes, |
|
resblock_dilation_sizes=hps.model.resblock_dilation_sizes, |
|
upsample_rates=hps.model.upsample_rates, |
|
upsample_initial_channel=hps.model.upsample_initial_channel, |
|
upsample_kernel_sizes=hps.model.upsample_kernel_sizes, |
|
n_layers_q=hps.model.n_layers_q, |
|
use_spectral_norm=hps.model.use_spectral_norm, |
|
gin_channels=hps.model.gin_channels, |
|
slm=hps.model.slm, |
|
).to(device) |
|
|
|
net_g.eval() |
|
if model_path.endswith(".pth") or model_path.endswith(".pt"): |
|
_ = utils.checkpoints.load_checkpoint( |
|
model_path, net_g, None, skip_optimizer=True, device=device |
|
) |
|
elif model_path.endswith(".safetensors") or model_path.endswith(".aivm"): |
|
_ = utils.safetensors.load_safetensors(model_path, net_g, True, device=device) |
|
else: |
|
raise ValueError(f"Unknown model format: {model_path}") |
|
return net_g |
|
|
|
|
|
def get_text( |
|
text: str, |
|
language_str: Languages, |
|
hps: HyperParameters, |
|
device: str, |
|
assist_text: str | None = None, |
|
assist_text_weight: float = 0.7, |
|
given_phone: list[str] | None = None, |
|
given_tone: list[int] | None = None, |
|
jtalk: OpenJTalk | None = None, |
|
) -> tuple[ |
|
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor |
|
]: |
|
use_jp_extra = hps.version.endswith("JP-Extra") |
|
norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone( |
|
text, |
|
language_str, |
|
given_phone=given_phone, |
|
given_tone=given_tone, |
|
use_jp_extra=use_jp_extra, |
|
|
|
raise_yomi_error=False, |
|
jtalk=jtalk, |
|
) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert_ori = extract_bert_feature( |
|
norm_text, |
|
word2ph, |
|
language_str, |
|
device, |
|
assist_text, |
|
assist_text_weight, |
|
sep_text, |
|
) |
|
del word2ph |
|
assert bert_ori.shape[-1] == len(phone), phone |
|
|
|
if language_str == Languages.ZH: |
|
bert = bert_ori |
|
ja_bert = torch.zeros(1024, len(phone), device=device) |
|
en_bert = torch.zeros(1024, len(phone), device=device) |
|
elif language_str == Languages.JP: |
|
bert = torch.zeros(1024, len(phone), device=device) |
|
ja_bert = bert_ori |
|
en_bert = torch.zeros(1024, len(phone), device=device) |
|
elif language_str == Languages.EN: |
|
bert = torch.zeros(1024, len(phone), device=device) |
|
ja_bert = torch.zeros(1024, len(phone), device=device) |
|
en_bert = bert_ori |
|
else: |
|
raise ValueError("language_str should be ZH, JP or EN") |
|
|
|
assert bert.shape[-1] == len(phone), ( |
|
f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
) |
|
|
|
phone = torch.LongTensor(phone).to(device) |
|
tone = torch.LongTensor(tone).to(device) |
|
language = torch.LongTensor(language).to(device) |
|
return bert, ja_bert, en_bert, phone, tone, language |
|
|
|
|
|
def infer( |
|
text: str, |
|
style_vec: NDArray[Any], |
|
sdp_ratio: float, |
|
noise_scale: float, |
|
noise_scale_w: float, |
|
length_scale: float, |
|
sid: int, |
|
language: Languages, |
|
hps: HyperParameters, |
|
net_g: SynthesizerTrn | SynthesizerTrnJPExtra, |
|
device: str, |
|
skip_start: bool = False, |
|
skip_end: bool = False, |
|
assist_text: str | None = None, |
|
assist_text_weight: float = 0.7, |
|
given_phone: list[str] | None = None, |
|
given_tone: list[int] | None = None, |
|
jtalk: OpenJTalk | None = None, |
|
) -> NDArray[np.float32]: |
|
is_jp_extra = hps.version.endswith("JP-Extra") |
|
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( |
|
text, |
|
language, |
|
hps, |
|
device, |
|
assist_text=assist_text, |
|
assist_text_weight=assist_text_weight, |
|
given_phone=given_phone, |
|
given_tone=given_tone, |
|
jtalk=jtalk, |
|
) |
|
if skip_start: |
|
phones = phones[3:] |
|
tones = tones[3:] |
|
lang_ids = lang_ids[3:] |
|
bert = bert[:, 3:] |
|
ja_bert = ja_bert[:, 3:] |
|
en_bert = en_bert[:, 3:] |
|
if skip_end: |
|
phones = phones[:-2] |
|
tones = tones[:-2] |
|
lang_ids = lang_ids[:-2] |
|
bert = bert[:, :-2] |
|
ja_bert = ja_bert[:, :-2] |
|
en_bert = en_bert[:, :-2] |
|
|
|
with torch.no_grad(): |
|
x_tst = phones.unsqueeze(0) |
|
tones = tones.unsqueeze(0) |
|
lang_ids = lang_ids.unsqueeze(0) |
|
bert = bert.unsqueeze(0) |
|
ja_bert = ja_bert.unsqueeze(0) |
|
en_bert = en_bert.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0) |
|
del phones |
|
sid_tensor = torch.LongTensor([sid]).to(device) |
|
|
|
if is_jp_extra: |
|
output = cast(SynthesizerTrnJPExtra, net_g).infer( |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
ja_bert, |
|
style_vec=style_vec_tensor, |
|
length_scale=length_scale, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
) |
|
else: |
|
output = cast(SynthesizerTrn, net_g).infer( |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
style_vec=style_vec_tensor, |
|
length_scale=length_scale, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
) |
|
|
|
audio = output[0][0, 0].data.cpu().float().numpy() |
|
|
|
del ( |
|
x_tst, |
|
tones, |
|
lang_ids, |
|
bert, |
|
x_tst_lengths, |
|
sid_tensor, |
|
ja_bert, |
|
en_bert, |
|
style_vec, |
|
) |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
return audio |
|
|