WariHima's picture
upload file
0b85fb9
from typing import Any, cast
import numpy as np
import torch
from numpy.typing import NDArray
from pyopenjtalk import OpenJTalk
from torch.overrides import TorchFunctionMode
from torch.utils import _device
from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.models import commons, utils
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.models.models import SynthesizerTrn
from style_bert_vits2.models.models_jp_extra import (
SynthesizerTrn as SynthesizerTrnJPExtra,
)
from style_bert_vits2.nlp import (
clean_text_with_given_phone_tone,
cleaned_text_to_sequence,
extract_bert_feature,
)
from style_bert_vits2.nlp.symbols import SYMBOLS
class EmptyInitOnDevice(TorchFunctionMode):
def __init__(self, device=None): # type: ignore
self.device = device
def __torch_function__(self, func, types, args=(), kwargs=None): # type: ignore
kwargs = kwargs or {}
if getattr(func, "__module__", None) == "torch.nn.init":
if "tensor" in kwargs:
return kwargs["tensor"]
else:
return args[0]
if (
self.device is not None
and func in _device._device_constructors() # type: ignore
and kwargs.get("device") is None
): # type: ignore
kwargs["device"] = self.device
return func(*args, **kwargs)
def get_net_g(
model_path: str, version: str, device: str, hps: HyperParameters
) -> SynthesizerTrn | SynthesizerTrnJPExtra:
with EmptyInitOnDevice(device):
if version.endswith("JP-Extra"):
logger.info("Using JP-Extra model")
net_g = SynthesizerTrnJPExtra(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
else:
logger.info("Using normal model")
net_g = SynthesizerTrn(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
net_g.eval()
if model_path.endswith(".pth") or model_path.endswith(".pt"):
_ = utils.checkpoints.load_checkpoint(
model_path, net_g, None, skip_optimizer=True, device=device
)
elif model_path.endswith(".safetensors") or model_path.endswith(".aivm"):
_ = utils.safetensors.load_safetensors(model_path, net_g, True, device=device)
else:
raise ValueError(f"Unknown model format: {model_path}")
return net_g
def get_text(
text: str,
language_str: Languages,
hps: HyperParameters,
device: str,
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> tuple[
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
]:
use_jp_extra = hps.version.endswith("JP-Extra")
norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone(
text,
language_str,
given_phone=given_phone,
given_tone=given_tone,
use_jp_extra=use_jp_extra,
# 推論時のみ呼び出されるので、raise_yomi_error は False に設定
raise_yomi_error=False,
jtalk=jtalk,
)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = extract_bert_feature(
norm_text,
word2ph,
language_str,
device,
assist_text,
assist_text_weight,
sep_text, # clean_text_with_given_phone_tone() の中間生成物を再利用して効率向上を図る
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == Languages.ZH:
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone), device=device)
en_bert = torch.zeros(1024, len(phone), device=device)
elif language_str == Languages.JP:
bert = torch.zeros(1024, len(phone), device=device)
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone), device=device)
elif language_str == Languages.EN:
bert = torch.zeros(1024, len(phone), device=device)
ja_bert = torch.zeros(1024, len(phone), device=device)
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(phone), (
f"Bert seq len {bert.shape[-1]} != {len(phone)}"
)
phone = torch.LongTensor(phone).to(device)
tone = torch.LongTensor(tone).to(device)
language = torch.LongTensor(language).to(device)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text: str,
style_vec: NDArray[Any],
sdp_ratio: float,
noise_scale: float,
noise_scale_w: float,
length_scale: float,
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id
language: Languages,
hps: HyperParameters,
net_g: SynthesizerTrn | SynthesizerTrnJPExtra,
device: str,
skip_start: bool = False,
skip_end: bool = False,
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> NDArray[np.float32]:
is_jp_extra = hps.version.endswith("JP-Extra")
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
given_phone=given_phone,
given_tone=given_tone,
jtalk=jtalk,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.unsqueeze(0)
tones = tones.unsqueeze(0)
lang_ids = lang_ids.unsqueeze(0)
bert = bert.unsqueeze(0)
ja_bert = ja_bert.unsqueeze(0)
en_bert = en_bert.unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0)
del phones
sid_tensor = torch.LongTensor([sid]).to(device)
if is_jp_extra:
output = cast(SynthesizerTrnJPExtra, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
ja_bert,
style_vec=style_vec_tensor,
length_scale=length_scale,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
)
else:
output = cast(SynthesizerTrn, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec=style_vec_tensor,
length_scale=length_scale,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
)
audio = output[0][0, 0].data.cpu().float().numpy()
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
sid_tensor,
ja_bert,
en_bert,
style_vec,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio