sovits-4.0_datealive / preprocess_hubert_f0.py
Wanlau's picture
add files
de0ac05
raw
history blame
2.08 kB
import math
import multiprocessing
import os
import argparse
from random import shuffle
import torch
from glob import glob
from tqdm import tqdm
import utils
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import librosa
import numpy as np
hps = utils.get_hparams_from_file("configs/config.json")
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
def process_one(filename, hmodel):
# print(filename)
wav, sr = librosa.load(filename, sr=sampling_rate)
soft_path = filename + ".soft.pt"
if not os.path.exists(soft_path):
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
wav16k = torch.from_numpy(wav16k).to(devive)
c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
torch.save(c.cpu(), soft_path)
f0_path = filename + ".f0.npy"
if not os.path.exists(f0_path):
f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
np.save(f0_path, f0)
def process_batch(filenames):
print("Loading hubert for content...")
device = "cuda" if torch.cuda.is_available() else "cpu"
hmodel = utils.get_hubert_model().to(device)
print("Loaded hubert.")
for filename in tqdm(filenames):
process_one(filename, hmodel)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
args = parser.parse_args()
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
shuffle(filenames)
multiprocessing.set_start_method('spawn',force=True)
num_processes = 1
chunk_size = int(math.ceil(len(filenames) / num_processes))
chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
print([len(c) for c in chunks])
processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
for p in processes:
p.start()