sovits-4.0_datealive / data_utils.py
Wanlau's picture
add files
de0ac05
raw
history blame
4.98 kB
import time
import os
import random
import numpy as np
import torch
import torch.utils.data
import modules.commons as commons
import utils
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
from utils import load_wav_to_torch, load_filepaths_and_text
# import h5py
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.spec_len = hparams.train.max_speclen
self.spk_map = hparams.spk
random.seed(1234)
random.shuffle(self.audiopaths)
def get_audio(self, filename):
filename = filename.replace("\\", "/")
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
spk = filename.split("/")[-2]
spk = torch.LongTensor([self.spk_map[spk]])
f0 = np.load(filename + ".f0.npy")
f0, uv = utils.interpolate_f0(f0)
f0 = torch.FloatTensor(f0)
uv = torch.FloatTensor(uv)
c = torch.load(filename+ ".soft.pt")
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
lmin = min(c.size(-1), spec.size(-1))
assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
audio_norm = audio_norm[:, :lmin * self.hop_length]
# if spec.shape[1] < 30:
# print("skip too short audio:", filename)
# return None
if spec.shape[1] > 800:
start = random.randint(0, spec.shape[1]-800)
end = start + 790
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
return c, f0, spec, audio_norm, spk, uv
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
class TextAudioCollate:
def __call__(self, batch):
batch = [b for b in batch if b is not None]
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[0].shape[1] for x in batch]),
dim=0, descending=True)
max_c_len = max([x[0].size(1) for x in batch])
max_wav_len = max([x[3].size(1) for x in batch])
lengths = torch.LongTensor(len(batch))
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
f0_padded = torch.FloatTensor(len(batch), max_c_len)
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
spkids = torch.LongTensor(len(batch), 1)
uv_padded = torch.FloatTensor(len(batch), max_c_len)
c_padded.zero_()
spec_padded.zero_()
f0_padded.zero_()
wav_padded.zero_()
uv_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
c = row[0]
c_padded[i, :, :c.size(1)] = c
lengths[i] = c.size(1)
f0 = row[1]
f0_padded[i, :f0.size(0)] = f0
spec = row[2]
spec_padded[i, :, :spec.size(1)] = spec
wav = row[3]
wav_padded[i, :, :wav.size(1)] = wav
spkids[i, 0] = row[4]
uv = row[5]
uv_padded[i, :uv.size(0)] = uv
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded