Walid-Ahmed's picture
Update app.py
5cdefd2 verified
import gradio as gr
from transformers import pipeline
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# Load the segmentation pipeline
pipe = pipeline("image-segmentation", model="mattmdjaga/segformer_b2_clothes")
# Your predefined label dictionary
label_dict = {
0: "Background",
1: "Hat",
2: "Hair",
3: "Sunglasses",
4: "Upper-clothes",
5: "Skirt",
6: "Pants",
7: "Dress",
8: "Belt",
9: "Left-shoe",
10: "Right-shoe",
11: "Face",
12: "Left-leg",
13: "Right-leg",
14: "Left-arm",
15: "Right-arm",
16: "Bag",
17: "Scarf",
}
# Function to process the image and generate the segmentation map
# Function to process the image and generate the segmentation map
def segment_image(image):
# Perform segmentation
result = pipe(image)
# Initialize an empty array for the segmentation map
image_width, image_height = result[0]["mask"].size
segmentation_map = np.zeros((image_height, image_width), dtype=np.uint8)
# Combine masks into a single segmentation map
for entry in result:
label = entry["label"] # Get the label (e.g., "Hair", "Upper-clothes")
mask = np.array(entry["mask"]) # Convert PIL Image to NumPy array
# Find the index of the label in the original label dictionary
class_idx = [key for key, value in label_dict.items() if value == label][0]
# Assign the correct class index to the segmentation map
segmentation_map[mask > 0] = class_idx
# Get the unique class indices in the segmentation map
unique_classes = np.unique(segmentation_map)
# Print the names of the detected classes
print("Detected Classes:")
for class_idx in unique_classes:
print(f"- {label_dict[class_idx]}")
# Create a matplotlib figure and visualize the segmentation map
plt.figure(figsize=(8, 8))
plt.imshow(segmentation_map, cmap="tab20") # Visualize using a colormap
# Get the unique class indices in the segmentation map
unique_classes = np.unique(segmentation_map)
# Filter the label dictionary to include only detected classes
filtered_labels = {idx: label_dict[idx] for idx in unique_classes}
# Create a dynamic colorbar with only the detected classes
cbar = plt.colorbar(ticks=unique_classes)
cbar.ax.set_yticklabels([filtered_labels[i] for i in unique_classes])
plt.title("Segmented Image with Detected Classes")
plt.axis("off")
plt.savefig("segmented_output.png", bbox_inches="tight")
plt.close()
return Image.open("segmented_output.png")
# Gradio interface
interface = gr.Interface(
fn=segment_image,
inputs=gr.Image(type="pil"), # Input is an image
outputs=gr.Image(type="pil"), # Output is an image with the colormap
#examples=["example_image.jpg"], # Use the saved image as an example
examples=["1.jpg", "2.jpg", "3.jpg"],
title="Clothes Segmentation with Colormap",
description="Upload an image, and the segmentation model will produce an output with a colormap applied to the segmented classes."
)
# Launch the app
interface.launch()