|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
|
|
import hopsworks |
|
import joblib |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("titanic", version=4) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/titanic_model.pkl") |
|
|
|
|
|
def titanic(Pclass, Sex, Age, SibSp): |
|
input_list = [] |
|
input_list.append(Pclass) |
|
input_list.append(Sex) |
|
input_list.append(Age) |
|
input_list.append(SibSp) |
|
|
|
res = model.predict(np.asarray(input_list).reshape(1, -1)) |
|
|
|
|
|
flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" |
|
img = Image.open(requests.get(flower_url, stream=True).raw) |
|
return img |
|
|
|
demo = gr.Interface( |
|
fn=titanic, |
|
title="Titanic Predictive Analytics", |
|
description="Experiment with Passenger class/Sex/Age/SibSp to predict if the person is survived or not.", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=1.0, label="Pclass (Flight class 1/2/3)"), |
|
gr.inputs.Number(default=1.0, label="Sex (male=1/female=2)"), |
|
gr.inputs.Number(default=1.0, label="Age (in years)"), |
|
gr.inputs.Number(default=1.0, label="SibSp (number of siblings)"), |
|
], |
|
outputs=gr.Image(type="pil")) |
|
|
|
demo.launch() |
|
|
|
|