|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from transformers import pipeline |
|
from geopy.geocoders import Nominatim |
|
|
|
|
|
@st.cache_resource |
|
def load_llama_small_model(): |
|
model_name = "meta-llama/Llama-2-7b" |
|
generator = pipeline("text-generation", model=model_name) |
|
return generator |
|
|
|
@st.cache_resource |
|
def load_llama_large_model(): |
|
model_name = "meta-llama/Llama-3.1-405b" |
|
generator = pipeline("text-generation", model=model_name) |
|
return generator |
|
|
|
@st.cache_resource |
|
def load_multimodal_model(): |
|
model_name = "google/vit-base-patch16-224" |
|
vision_model = pipeline("image-classification", model=model_name) |
|
return vision_model |
|
|
|
@st.cache_resource |
|
def load_text_classification_model(): |
|
model_name = "distilbert-base-uncased" |
|
text_classifier = pipeline("text-classification", model=model_name) |
|
return text_classifier |
|
|
|
def main(): |
|
st.title("AI-Powered Telecom Solution for Underserved Areas") |
|
st.write("This app is designed to leverage AI-powered models for optimizing telecommunication infrastructure in underserved areas.") |
|
|
|
st.sidebar.title("Options") |
|
option = st.sidebar.selectbox( |
|
"Select a Functionality", |
|
("Network Planning Assistance", "Community Content Translation", "Operational Diagnostics", "Workflow Optimization") |
|
) |
|
|
|
if option == "Network Planning Assistance": |
|
st.header("Network Planning Assistance") |
|
address = st.text_input("Enter a location to analyze network suitability:") |
|
if st.button("Analyze Location"): |
|
if address: |
|
geolocator = Nominatim(user_agent="geoapiExercises") |
|
location = geolocator.geocode(address) |
|
if location: |
|
st.write(f"Location found: {location.address}") |
|
st.map(pd.DataFrame(np.array([[location.latitude, location.longitude]]), columns=['lat', 'lon'])) |
|
st.write("Using Llama models to suggest optimal network deployment...") |
|
small_model = load_llama_small_model() |
|
large_model = load_llama_large_model() |
|
small_result = small_model(f"Provide initial suggestions for network deployment at {location.address}. Consider rural telecommunication needs.", max_length=100) |
|
large_result = large_model(f"Provide detailed suggestions for network deployment at {location.address}, considering infrastructure limitations and long-term scalability.", max_length=200) |
|
st.success("Initial Suggestions:") |
|
st.write(small_result[0]['generated_text']) |
|
st.success("Detailed Analysis:") |
|
st.write(large_result[0]['generated_text']) |
|
else: |
|
st.error("Location not found. Please try another address.") |
|
else: |
|
st.error("Please enter a location to proceed.") |
|
|
|
elif option == "Community Content Translation": |
|
st.header("Community Content Translation Assistance") |
|
text_to_translate = st.text_area("Enter content to translate for local communities:") |
|
if st.button("Translate Content"): |
|
if text_to_translate: |
|
small_model = load_llama_small_model() |
|
large_model = load_llama_large_model() |
|
translation_result = small_model(f"Translate the following content into a simple language suitable for rural communities: {text_to_translate}", max_length=100) |
|
classification_model = load_text_classification_model() |
|
content_type = classification_model(text_to_translate) |
|
st.success("Translated Content:") |
|
st.write(translation_result[0]['generated_text']) |
|
st.success("Content Type Classification:") |
|
st.write(content_type) |
|
else: |
|
st.error("Please enter content to proceed.") |
|
|
|
elif option == "Operational Diagnostics": |
|
st.header("Operational Maintenance & Network Troubleshooting") |
|
uploaded_file = st.file_uploader("Upload network diagnostic image (e.g., hardware photo):") |
|
if uploaded_file is not None: |
|
st.image(uploaded_file, caption='Uploaded Diagnostic Image', use_column_width=True) |
|
with st.spinner("Analyzing the image..."): |
|
vision_model = load_multimodal_model() |
|
result = vision_model(uploaded_file) |
|
st.success("Analysis Result:") |
|
st.write(result) |
|
|
|
elif option == "Workflow Optimization": |
|
st.header("Workflow Optimization for Telecom Operations") |
|
st.write("This feature helps optimize administrative and regulatory workflows using AI models.") |
|
task_description = st.text_area("Enter a workflow task that needs optimization:") |
|
if st.button("Optimize Workflow"): |
|
if task_description: |
|
large_model = load_llama_large_model() |
|
result = large_model(f"Optimize the following workflow for better efficiency: {task_description}", max_length=150) |
|
st.success("Optimized Workflow Suggestion:") |
|
st.write(result[0]['generated_text']) |
|
else: |
|
st.error("Please enter a workflow task to proceed.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|