Spaces:
Configuration error
Configuration error
/** | |
* Javascript implementation of basic RSA algorithms. | |
* | |
* @author Dave Longley | |
* | |
* Copyright (c) 2010-2014 Digital Bazaar, Inc. | |
* | |
* The only algorithm currently supported for PKI is RSA. | |
* | |
* An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo | |
* ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier | |
* and a subjectPublicKey of type bit string. | |
* | |
* The AlgorithmIdentifier contains an Object Identifier (OID) and parameters | |
* for the algorithm, if any. In the case of RSA, there aren't any. | |
* | |
* SubjectPublicKeyInfo ::= SEQUENCE { | |
* algorithm AlgorithmIdentifier, | |
* subjectPublicKey BIT STRING | |
* } | |
* | |
* AlgorithmIdentifer ::= SEQUENCE { | |
* algorithm OBJECT IDENTIFIER, | |
* parameters ANY DEFINED BY algorithm OPTIONAL | |
* } | |
* | |
* For an RSA public key, the subjectPublicKey is: | |
* | |
* RSAPublicKey ::= SEQUENCE { | |
* modulus INTEGER, -- n | |
* publicExponent INTEGER -- e | |
* } | |
* | |
* PrivateKeyInfo ::= SEQUENCE { | |
* version Version, | |
* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, | |
* privateKey PrivateKey, | |
* attributes [0] IMPLICIT Attributes OPTIONAL | |
* } | |
* | |
* Version ::= INTEGER | |
* PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier | |
* PrivateKey ::= OCTET STRING | |
* Attributes ::= SET OF Attribute | |
* | |
* An RSA private key as the following structure: | |
* | |
* RSAPrivateKey ::= SEQUENCE { | |
* version Version, | |
* modulus INTEGER, -- n | |
* publicExponent INTEGER, -- e | |
* privateExponent INTEGER, -- d | |
* prime1 INTEGER, -- p | |
* prime2 INTEGER, -- q | |
* exponent1 INTEGER, -- d mod (p-1) | |
* exponent2 INTEGER, -- d mod (q-1) | |
* coefficient INTEGER -- (inverse of q) mod p | |
* } | |
* | |
* Version ::= INTEGER | |
* | |
* The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1 | |
*/ | |
var forge = require('./forge'); | |
require('./asn1'); | |
require('./jsbn'); | |
require('./oids'); | |
require('./pkcs1'); | |
require('./prime'); | |
require('./random'); | |
require('./util'); | |
if(typeof BigInteger === 'undefined') { | |
var BigInteger = forge.jsbn.BigInteger; | |
} | |
var _crypto = forge.util.isNodejs ? require('crypto') : null; | |
// shortcut for asn.1 API | |
var asn1 = forge.asn1; | |
// shortcut for util API | |
var util = forge.util; | |
/* | |
* RSA encryption and decryption, see RFC 2313. | |
*/ | |
forge.pki = forge.pki || {}; | |
module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {}; | |
var pki = forge.pki; | |
// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 | |
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; | |
// validator for a PrivateKeyInfo structure | |
var privateKeyValidator = { | |
// PrivateKeyInfo | |
name: 'PrivateKeyInfo', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
// Version (INTEGER) | |
name: 'PrivateKeyInfo.version', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyVersion' | |
}, { | |
// privateKeyAlgorithm | |
name: 'PrivateKeyInfo.privateKeyAlgorithm', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
name: 'AlgorithmIdentifier.algorithm', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.OID, | |
constructed: false, | |
capture: 'privateKeyOid' | |
}] | |
}, { | |
// PrivateKey | |
name: 'PrivateKeyInfo', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.OCTETSTRING, | |
constructed: false, | |
capture: 'privateKey' | |
}] | |
}; | |
// validator for an RSA private key | |
var rsaPrivateKeyValidator = { | |
// RSAPrivateKey | |
name: 'RSAPrivateKey', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
// Version (INTEGER) | |
name: 'RSAPrivateKey.version', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyVersion' | |
}, { | |
// modulus (n) | |
name: 'RSAPrivateKey.modulus', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyModulus' | |
}, { | |
// publicExponent (e) | |
name: 'RSAPrivateKey.publicExponent', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyPublicExponent' | |
}, { | |
// privateExponent (d) | |
name: 'RSAPrivateKey.privateExponent', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyPrivateExponent' | |
}, { | |
// prime1 (p) | |
name: 'RSAPrivateKey.prime1', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyPrime1' | |
}, { | |
// prime2 (q) | |
name: 'RSAPrivateKey.prime2', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyPrime2' | |
}, { | |
// exponent1 (d mod (p-1)) | |
name: 'RSAPrivateKey.exponent1', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyExponent1' | |
}, { | |
// exponent2 (d mod (q-1)) | |
name: 'RSAPrivateKey.exponent2', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyExponent2' | |
}, { | |
// coefficient ((inverse of q) mod p) | |
name: 'RSAPrivateKey.coefficient', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'privateKeyCoefficient' | |
}] | |
}; | |
// validator for an RSA public key | |
var rsaPublicKeyValidator = { | |
// RSAPublicKey | |
name: 'RSAPublicKey', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
// modulus (n) | |
name: 'RSAPublicKey.modulus', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'publicKeyModulus' | |
}, { | |
// publicExponent (e) | |
name: 'RSAPublicKey.exponent', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.INTEGER, | |
constructed: false, | |
capture: 'publicKeyExponent' | |
}] | |
}; | |
// validator for an SubjectPublicKeyInfo structure | |
// Note: Currently only works with an RSA public key | |
var publicKeyValidator = forge.pki.rsa.publicKeyValidator = { | |
name: 'SubjectPublicKeyInfo', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
captureAsn1: 'subjectPublicKeyInfo', | |
value: [{ | |
name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
name: 'AlgorithmIdentifier.algorithm', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.OID, | |
constructed: false, | |
capture: 'publicKeyOid' | |
}] | |
}, { | |
// subjectPublicKey | |
name: 'SubjectPublicKeyInfo.subjectPublicKey', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.BITSTRING, | |
constructed: false, | |
value: [{ | |
// RSAPublicKey | |
name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
optional: true, | |
captureAsn1: 'rsaPublicKey' | |
}] | |
}] | |
}; | |
// validator for a DigestInfo structure | |
var digestInfoValidator = { | |
name: 'DigestInfo', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
name: 'DigestInfo.DigestAlgorithm', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.SEQUENCE, | |
constructed: true, | |
value: [{ | |
name: 'DigestInfo.DigestAlgorithm.algorithmIdentifier', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.OID, | |
constructed: false, | |
capture: 'algorithmIdentifier' | |
}, { | |
// NULL paramters | |
name: 'DigestInfo.DigestAlgorithm.parameters', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.NULL, | |
// captured only to check existence for md2 and md5 | |
capture: 'parameters', | |
optional: true, | |
constructed: false | |
}] | |
}, { | |
// digest | |
name: 'DigestInfo.digest', | |
tagClass: asn1.Class.UNIVERSAL, | |
type: asn1.Type.OCTETSTRING, | |
constructed: false, | |
capture: 'digest' | |
}] | |
}; | |
/** | |
* Wrap digest in DigestInfo object. | |
* | |
* This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447. | |
* | |
* DigestInfo ::= SEQUENCE { | |
* digestAlgorithm DigestAlgorithmIdentifier, | |
* digest Digest | |
* } | |
* | |
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier | |
* Digest ::= OCTET STRING | |
* | |
* @param md the message digest object with the hash to sign. | |
* | |
* @return the encoded message (ready for RSA encrytion) | |
*/ | |
var emsaPkcs1v15encode = function(md) { | |
// get the oid for the algorithm | |
var oid; | |
if(md.algorithm in pki.oids) { | |
oid = pki.oids[md.algorithm]; | |
} else { | |
var error = new Error('Unknown message digest algorithm.'); | |
error.algorithm = md.algorithm; | |
throw error; | |
} | |
var oidBytes = asn1.oidToDer(oid).getBytes(); | |
// create the digest info | |
var digestInfo = asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); | |
var digestAlgorithm = asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); | |
digestAlgorithm.value.push(asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes)); | |
digestAlgorithm.value.push(asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')); | |
var digest = asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, | |
false, md.digest().getBytes()); | |
digestInfo.value.push(digestAlgorithm); | |
digestInfo.value.push(digest); | |
// encode digest info | |
return asn1.toDer(digestInfo).getBytes(); | |
}; | |
/** | |
* Performs x^c mod n (RSA encryption or decryption operation). | |
* | |
* @param x the number to raise and mod. | |
* @param key the key to use. | |
* @param pub true if the key is public, false if private. | |
* | |
* @return the result of x^c mod n. | |
*/ | |
var _modPow = function(x, key, pub) { | |
if(pub) { | |
return x.modPow(key.e, key.n); | |
} | |
if(!key.p || !key.q) { | |
// allow calculation without CRT params (slow) | |
return x.modPow(key.d, key.n); | |
} | |
// pre-compute dP, dQ, and qInv if necessary | |
if(!key.dP) { | |
key.dP = key.d.mod(key.p.subtract(BigInteger.ONE)); | |
} | |
if(!key.dQ) { | |
key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE)); | |
} | |
if(!key.qInv) { | |
key.qInv = key.q.modInverse(key.p); | |
} | |
/* Chinese remainder theorem (CRT) states: | |
Suppose n1, n2, ..., nk are positive integers which are pairwise | |
coprime (n1 and n2 have no common factors other than 1). For any | |
integers x1, x2, ..., xk there exists an integer x solving the | |
system of simultaneous congruences (where ~= means modularly | |
congruent so a ~= b mod n means a mod n = b mod n): | |
x ~= x1 mod n1 | |
x ~= x2 mod n2 | |
... | |
x ~= xk mod nk | |
This system of congruences has a single simultaneous solution x | |
between 0 and n - 1. Furthermore, each xk solution and x itself | |
is congruent modulo the product n = n1*n2*...*nk. | |
So x1 mod n = x2 mod n = xk mod n = x mod n. | |
The single simultaneous solution x can be solved with the following | |
equation: | |
x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni. | |
Where x is less than n, xi = x mod ni. | |
For RSA we are only concerned with k = 2. The modulus n = pq, where | |
p and q are coprime. The RSA decryption algorithm is: | |
y = x^d mod n | |
Given the above: | |
x1 = x^d mod p | |
r1 = n/p = q | |
s1 = q^-1 mod p | |
x2 = x^d mod q | |
r2 = n/q = p | |
s2 = p^-1 mod q | |
So y = (x1r1s1 + x2r2s2) mod n | |
= ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n | |
According to Fermat's Little Theorem, if the modulus P is prime, | |
for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P. | |
Since A is not divisible by P it follows that if: | |
N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore: | |
A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort | |
to calculate). In order to calculate x^d mod p more quickly the | |
exponent d mod (p - 1) is stored in the RSA private key (the same | |
is done for x^d mod q). These values are referred to as dP and dQ | |
respectively. Therefore we now have: | |
y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n | |
Since we'll be reducing x^dP by modulo p (same for q) we can also | |
reduce x by p (and q respectively) before hand. Therefore, let | |
xp = ((x mod p)^dP mod p), and | |
xq = ((x mod q)^dQ mod q), yielding: | |
y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n | |
This can be further reduced to a simple algorithm that only | |
requires 1 inverse (the q inverse is used) to be used and stored. | |
The algorithm is called Garner's algorithm. If qInv is the | |
inverse of q, we simply calculate: | |
y = (qInv*(xp - xq) mod p) * q + xq | |
However, there are two further complications. First, we need to | |
ensure that xp > xq to prevent signed BigIntegers from being used | |
so we add p until this is true (since we will be mod'ing with | |
p anyway). Then, there is a known timing attack on algorithms | |
using the CRT. To mitigate this risk, "cryptographic blinding" | |
should be used. This requires simply generating a random number r | |
between 0 and n-1 and its inverse and multiplying x by r^e before | |
calculating y and then multiplying y by r^-1 afterwards. Note that | |
r must be coprime with n (gcd(r, n) === 1) in order to have an | |
inverse. | |
*/ | |
// cryptographic blinding | |
var r; | |
do { | |
r = new BigInteger( | |
forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)), | |
16); | |
} while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE)); | |
x = x.multiply(r.modPow(key.e, key.n)).mod(key.n); | |
// calculate xp and xq | |
var xp = x.mod(key.p).modPow(key.dP, key.p); | |
var xq = x.mod(key.q).modPow(key.dQ, key.q); | |
// xp must be larger than xq to avoid signed bit usage | |
while(xp.compareTo(xq) < 0) { | |
xp = xp.add(key.p); | |
} | |
// do last step | |
var y = xp.subtract(xq) | |
.multiply(key.qInv).mod(key.p) | |
.multiply(key.q).add(xq); | |
// remove effect of random for cryptographic blinding | |
y = y.multiply(r.modInverse(key.n)).mod(key.n); | |
return y; | |
}; | |
/** | |
* NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or | |
* 'encrypt' on a public key object instead. | |
* | |
* Performs RSA encryption. | |
* | |
* The parameter bt controls whether to put padding bytes before the | |
* message passed in. Set bt to either true or false to disable padding | |
* completely (in order to handle e.g. EMSA-PSS encoding seperately before), | |
* signaling whether the encryption operation is a public key operation | |
* (i.e. encrypting data) or not, i.e. private key operation (data signing). | |
* | |
* For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01 | |
* (for signing) or 0x02 (for encryption). The key operation mode (private | |
* or public) is derived from this flag in that case). | |
* | |
* @param m the message to encrypt as a byte string. | |
* @param key the RSA key to use. | |
* @param bt for PKCS#1 v1.5 padding, the block type to use | |
* (0x01 for private key, 0x02 for public), | |
* to disable padding: true = public key, false = private key. | |
* | |
* @return the encrypted bytes as a string. | |
*/ | |
pki.rsa.encrypt = function(m, key, bt) { | |
var pub = bt; | |
var eb; | |
// get the length of the modulus in bytes | |
var k = Math.ceil(key.n.bitLength() / 8); | |
if(bt !== false && bt !== true) { | |
// legacy, default to PKCS#1 v1.5 padding | |
pub = (bt === 0x02); | |
eb = _encodePkcs1_v1_5(m, key, bt); | |
} else { | |
eb = forge.util.createBuffer(); | |
eb.putBytes(m); | |
} | |
// load encryption block as big integer 'x' | |
// FIXME: hex conversion inefficient, get BigInteger w/byte strings | |
var x = new BigInteger(eb.toHex(), 16); | |
// do RSA encryption | |
var y = _modPow(x, key, pub); | |
// convert y into the encrypted data byte string, if y is shorter in | |
// bytes than k, then prepend zero bytes to fill up ed | |
// FIXME: hex conversion inefficient, get BigInteger w/byte strings | |
var yhex = y.toString(16); | |
var ed = forge.util.createBuffer(); | |
var zeros = k - Math.ceil(yhex.length / 2); | |
while(zeros > 0) { | |
ed.putByte(0x00); | |
--zeros; | |
} | |
ed.putBytes(forge.util.hexToBytes(yhex)); | |
return ed.getBytes(); | |
}; | |
/** | |
* NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or | |
* 'verify' on a public key object instead. | |
* | |
* Performs RSA decryption. | |
* | |
* The parameter ml controls whether to apply PKCS#1 v1.5 padding | |
* or not. Set ml = false to disable padding removal completely | |
* (in order to handle e.g. EMSA-PSS later on) and simply pass back | |
* the RSA encryption block. | |
* | |
* @param ed the encrypted data to decrypt in as a byte string. | |
* @param key the RSA key to use. | |
* @param pub true for a public key operation, false for private. | |
* @param ml the message length, if known, false to disable padding. | |
* | |
* @return the decrypted message as a byte string. | |
*/ | |
pki.rsa.decrypt = function(ed, key, pub, ml) { | |
// get the length of the modulus in bytes | |
var k = Math.ceil(key.n.bitLength() / 8); | |
// error if the length of the encrypted data ED is not k | |
if(ed.length !== k) { | |
var error = new Error('Encrypted message length is invalid.'); | |
error.length = ed.length; | |
error.expected = k; | |
throw error; | |
} | |
// convert encrypted data into a big integer | |
// FIXME: hex conversion inefficient, get BigInteger w/byte strings | |
var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16); | |
// y must be less than the modulus or it wasn't the result of | |
// a previous mod operation (encryption) using that modulus | |
if(y.compareTo(key.n) >= 0) { | |
throw new Error('Encrypted message is invalid.'); | |
} | |
// do RSA decryption | |
var x = _modPow(y, key, pub); | |
// create the encryption block, if x is shorter in bytes than k, then | |
// prepend zero bytes to fill up eb | |
// FIXME: hex conversion inefficient, get BigInteger w/byte strings | |
var xhex = x.toString(16); | |
var eb = forge.util.createBuffer(); | |
var zeros = k - Math.ceil(xhex.length / 2); | |
while(zeros > 0) { | |
eb.putByte(0x00); | |
--zeros; | |
} | |
eb.putBytes(forge.util.hexToBytes(xhex)); | |
if(ml !== false) { | |
// legacy, default to PKCS#1 v1.5 padding | |
return _decodePkcs1_v1_5(eb.getBytes(), key, pub); | |
} | |
// return message | |
return eb.getBytes(); | |
}; | |
/** | |
* Creates an RSA key-pair generation state object. It is used to allow | |
* key-generation to be performed in steps. It also allows for a UI to | |
* display progress updates. | |
* | |
* @param bits the size for the private key in bits, defaults to 2048. | |
* @param e the public exponent to use, defaults to 65537 (0x10001). | |
* @param [options] the options to use. | |
* prng a custom crypto-secure pseudo-random number generator to use, | |
* that must define "getBytesSync". | |
* algorithm the algorithm to use (default: 'PRIMEINC'). | |
* | |
* @return the state object to use to generate the key-pair. | |
*/ | |
pki.rsa.createKeyPairGenerationState = function(bits, e, options) { | |
// TODO: migrate step-based prime generation code to forge.prime | |
// set default bits | |
if(typeof(bits) === 'string') { | |
bits = parseInt(bits, 10); | |
} | |
bits = bits || 2048; | |
// create prng with api that matches BigInteger secure random | |
options = options || {}; | |
var prng = options.prng || forge.random; | |
var rng = { | |
// x is an array to fill with bytes | |
nextBytes: function(x) { | |
var b = prng.getBytesSync(x.length); | |
for(var i = 0; i < x.length; ++i) { | |
x[i] = b.charCodeAt(i); | |
} | |
} | |
}; | |
var algorithm = options.algorithm || 'PRIMEINC'; | |
// create PRIMEINC algorithm state | |
var rval; | |
if(algorithm === 'PRIMEINC') { | |
rval = { | |
algorithm: algorithm, | |
state: 0, | |
bits: bits, | |
rng: rng, | |
eInt: e || 65537, | |
e: new BigInteger(null), | |
p: null, | |
q: null, | |
qBits: bits >> 1, | |
pBits: bits - (bits >> 1), | |
pqState: 0, | |
num: null, | |
keys: null | |
}; | |
rval.e.fromInt(rval.eInt); | |
} else { | |
throw new Error('Invalid key generation algorithm: ' + algorithm); | |
} | |
return rval; | |
}; | |
/** | |
* Attempts to runs the key-generation algorithm for at most n seconds | |
* (approximately) using the given state. When key-generation has completed, | |
* the keys will be stored in state.keys. | |
* | |
* To use this function to update a UI while generating a key or to prevent | |
* causing browser lockups/warnings, set "n" to a value other than 0. A | |
* simple pattern for generating a key and showing a progress indicator is: | |
* | |
* var state = pki.rsa.createKeyPairGenerationState(2048); | |
* var step = function() { | |
* // step key-generation, run algorithm for 100 ms, repeat | |
* if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) { | |
* setTimeout(step, 1); | |
* } else { | |
* // key-generation complete | |
* // TODO: turn off progress indicator here | |
* // TODO: use the generated key-pair in "state.keys" | |
* } | |
* }; | |
* // TODO: turn on progress indicator here | |
* setTimeout(step, 0); | |
* | |
* @param state the state to use. | |
* @param n the maximum number of milliseconds to run the algorithm for, 0 | |
* to run the algorithm to completion. | |
* | |
* @return true if the key-generation completed, false if not. | |
*/ | |
pki.rsa.stepKeyPairGenerationState = function(state, n) { | |
// set default algorithm if not set | |
if(!('algorithm' in state)) { | |
state.algorithm = 'PRIMEINC'; | |
} | |
// TODO: migrate step-based prime generation code to forge.prime | |
// TODO: abstract as PRIMEINC algorithm | |
// do key generation (based on Tom Wu's rsa.js, see jsbn.js license) | |
// with some minor optimizations and designed to run in steps | |
// local state vars | |
var THIRTY = new BigInteger(null); | |
THIRTY.fromInt(30); | |
var deltaIdx = 0; | |
var op_or = function(x, y) {return x | y;}; | |
// keep stepping until time limit is reached or done | |
var t1 = +new Date(); | |
var t2; | |
var total = 0; | |
while(state.keys === null && (n <= 0 || total < n)) { | |
// generate p or q | |
if(state.state === 0) { | |
/* Note: All primes are of the form: | |
30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i | |
When we generate a random number, we always align it at 30k + 1. Each | |
time the number is determined not to be prime we add to get to the | |
next 'i', eg: if the number was at 30k + 1 we add 6. */ | |
var bits = (state.p === null) ? state.pBits : state.qBits; | |
var bits1 = bits - 1; | |
// get a random number | |
if(state.pqState === 0) { | |
state.num = new BigInteger(bits, state.rng); | |
// force MSB set | |
if(!state.num.testBit(bits1)) { | |
state.num.bitwiseTo( | |
BigInteger.ONE.shiftLeft(bits1), op_or, state.num); | |
} | |
// align number on 30k+1 boundary | |
state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0); | |
deltaIdx = 0; | |
++state.pqState; | |
} else if(state.pqState === 1) { | |
// try to make the number a prime | |
if(state.num.bitLength() > bits) { | |
// overflow, try again | |
state.pqState = 0; | |
// do primality test | |
} else if(state.num.isProbablePrime( | |
_getMillerRabinTests(state.num.bitLength()))) { | |
++state.pqState; | |
} else { | |
// get next potential prime | |
state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); | |
} | |
} else if(state.pqState === 2) { | |
// ensure number is coprime with e | |
state.pqState = | |
(state.num.subtract(BigInteger.ONE).gcd(state.e) | |
.compareTo(BigInteger.ONE) === 0) ? 3 : 0; | |
} else if(state.pqState === 3) { | |
// store p or q | |
state.pqState = 0; | |
if(state.p === null) { | |
state.p = state.num; | |
} else { | |
state.q = state.num; | |
} | |
// advance state if both p and q are ready | |
if(state.p !== null && state.q !== null) { | |
++state.state; | |
} | |
state.num = null; | |
} | |
} else if(state.state === 1) { | |
// ensure p is larger than q (swap them if not) | |
if(state.p.compareTo(state.q) < 0) { | |
state.num = state.p; | |
state.p = state.q; | |
state.q = state.num; | |
} | |
++state.state; | |
} else if(state.state === 2) { | |
// compute phi: (p - 1)(q - 1) (Euler's totient function) | |
state.p1 = state.p.subtract(BigInteger.ONE); | |
state.q1 = state.q.subtract(BigInteger.ONE); | |
state.phi = state.p1.multiply(state.q1); | |
++state.state; | |
} else if(state.state === 3) { | |
// ensure e and phi are coprime | |
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) { | |
// phi and e are coprime, advance | |
++state.state; | |
} else { | |
// phi and e aren't coprime, so generate a new p and q | |
state.p = null; | |
state.q = null; | |
state.state = 0; | |
} | |
} else if(state.state === 4) { | |
// create n, ensure n is has the right number of bits | |
state.n = state.p.multiply(state.q); | |
// ensure n is right number of bits | |
if(state.n.bitLength() === state.bits) { | |
// success, advance | |
++state.state; | |
} else { | |
// failed, get new q | |
state.q = null; | |
state.state = 0; | |
} | |
} else if(state.state === 5) { | |
// set keys | |
var d = state.e.modInverse(state.phi); | |
state.keys = { | |
privateKey: pki.rsa.setPrivateKey( | |
state.n, state.e, d, state.p, state.q, | |
d.mod(state.p1), d.mod(state.q1), | |
state.q.modInverse(state.p)), | |
publicKey: pki.rsa.setPublicKey(state.n, state.e) | |
}; | |
} | |
// update timing | |
t2 = +new Date(); | |
total += t2 - t1; | |
t1 = t2; | |
} | |
return state.keys !== null; | |
}; | |
/** | |
* Generates an RSA public-private key pair in a single call. | |
* | |
* To generate a key-pair in steps (to allow for progress updates and to | |
* prevent blocking or warnings in slow browsers) then use the key-pair | |
* generation state functions. | |
* | |
* To generate a key-pair asynchronously (either through web-workers, if | |
* available, or by breaking up the work on the main thread), pass a | |
* callback function. | |
* | |
* @param [bits] the size for the private key in bits, defaults to 2048. | |
* @param [e] the public exponent to use, defaults to 65537. | |
* @param [options] options for key-pair generation, if given then 'bits' | |
* and 'e' must *not* be given: | |
* bits the size for the private key in bits, (default: 2048). | |
* e the public exponent to use, (default: 65537 (0x10001)). | |
* workerScript the worker script URL. | |
* workers the number of web workers (if supported) to use, | |
* (default: 2). | |
* workLoad the size of the work load, ie: number of possible prime | |
* numbers for each web worker to check per work assignment, | |
* (default: 100). | |
* prng a custom crypto-secure pseudo-random number generator to use, | |
* that must define "getBytesSync". Disables use of native APIs. | |
* algorithm the algorithm to use (default: 'PRIMEINC'). | |
* @param [callback(err, keypair)] called once the operation completes. | |
* | |
* @return an object with privateKey and publicKey properties. | |
*/ | |
pki.rsa.generateKeyPair = function(bits, e, options, callback) { | |
// (bits), (options), (callback) | |
if(arguments.length === 1) { | |
if(typeof bits === 'object') { | |
options = bits; | |
bits = undefined; | |
} else if(typeof bits === 'function') { | |
callback = bits; | |
bits = undefined; | |
} | |
} else if(arguments.length === 2) { | |
// (bits, e), (bits, options), (bits, callback), (options, callback) | |
if(typeof bits === 'number') { | |
if(typeof e === 'function') { | |
callback = e; | |
e = undefined; | |
} else if(typeof e !== 'number') { | |
options = e; | |
e = undefined; | |
} | |
} else { | |
options = bits; | |
callback = e; | |
bits = undefined; | |
e = undefined; | |
} | |
} else if(arguments.length === 3) { | |
// (bits, e, options), (bits, e, callback), (bits, options, callback) | |
if(typeof e === 'number') { | |
if(typeof options === 'function') { | |
callback = options; | |
options = undefined; | |
} | |
} else { | |
callback = options; | |
options = e; | |
e = undefined; | |
} | |
} | |
options = options || {}; | |
if(bits === undefined) { | |
bits = options.bits || 2048; | |
} | |
if(e === undefined) { | |
e = options.e || 0x10001; | |
} | |
// use native code if permitted, available, and parameters are acceptable | |
if(!forge.options.usePureJavaScript && !options.prng && | |
bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) { | |
if(callback) { | |
// try native async | |
if(_detectNodeCrypto('generateKeyPair')) { | |
return _crypto.generateKeyPair('rsa', { | |
modulusLength: bits, | |
publicExponent: e, | |
publicKeyEncoding: { | |
type: 'spki', | |
format: 'pem' | |
}, | |
privateKeyEncoding: { | |
type: 'pkcs8', | |
format: 'pem' | |
} | |
}, function(err, pub, priv) { | |
if(err) { | |
return callback(err); | |
} | |
callback(null, { | |
privateKey: pki.privateKeyFromPem(priv), | |
publicKey: pki.publicKeyFromPem(pub) | |
}); | |
}); | |
} | |
if(_detectSubtleCrypto('generateKey') && | |
_detectSubtleCrypto('exportKey')) { | |
// use standard native generateKey | |
return util.globalScope.crypto.subtle.generateKey({ | |
name: 'RSASSA-PKCS1-v1_5', | |
modulusLength: bits, | |
publicExponent: _intToUint8Array(e), | |
hash: {name: 'SHA-256'} | |
}, true /* key can be exported*/, ['sign', 'verify']) | |
.then(function(pair) { | |
return util.globalScope.crypto.subtle.exportKey( | |
'pkcs8', pair.privateKey); | |
// avoiding catch(function(err) {...}) to support IE <= 8 | |
}).then(undefined, function(err) { | |
callback(err); | |
}).then(function(pkcs8) { | |
if(pkcs8) { | |
var privateKey = pki.privateKeyFromAsn1( | |
asn1.fromDer(forge.util.createBuffer(pkcs8))); | |
callback(null, { | |
privateKey: privateKey, | |
publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) | |
}); | |
} | |
}); | |
} | |
if(_detectSubtleMsCrypto('generateKey') && | |
_detectSubtleMsCrypto('exportKey')) { | |
var genOp = util.globalScope.msCrypto.subtle.generateKey({ | |
name: 'RSASSA-PKCS1-v1_5', | |
modulusLength: bits, | |
publicExponent: _intToUint8Array(e), | |
hash: {name: 'SHA-256'} | |
}, true /* key can be exported*/, ['sign', 'verify']); | |
genOp.oncomplete = function(e) { | |
var pair = e.target.result; | |
var exportOp = util.globalScope.msCrypto.subtle.exportKey( | |
'pkcs8', pair.privateKey); | |
exportOp.oncomplete = function(e) { | |
var pkcs8 = e.target.result; | |
var privateKey = pki.privateKeyFromAsn1( | |
asn1.fromDer(forge.util.createBuffer(pkcs8))); | |
callback(null, { | |
privateKey: privateKey, | |
publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e) | |
}); | |
}; | |
exportOp.onerror = function(err) { | |
callback(err); | |
}; | |
}; | |
genOp.onerror = function(err) { | |
callback(err); | |
}; | |
return; | |
} | |
} else { | |
// try native sync | |
if(_detectNodeCrypto('generateKeyPairSync')) { | |
var keypair = _crypto.generateKeyPairSync('rsa', { | |
modulusLength: bits, | |
publicExponent: e, | |
publicKeyEncoding: { | |
type: 'spki', | |
format: 'pem' | |
}, | |
privateKeyEncoding: { | |
type: 'pkcs8', | |
format: 'pem' | |
} | |
}); | |
return { | |
privateKey: pki.privateKeyFromPem(keypair.privateKey), | |
publicKey: pki.publicKeyFromPem(keypair.publicKey) | |
}; | |
} | |
} | |
} | |
// use JavaScript implementation | |
var state = pki.rsa.createKeyPairGenerationState(bits, e, options); | |
if(!callback) { | |
pki.rsa.stepKeyPairGenerationState(state, 0); | |
return state.keys; | |
} | |
_generateKeyPair(state, options, callback); | |
}; | |
/** | |
* Sets an RSA public key from BigIntegers modulus and exponent. | |
* | |
* @param n the modulus. | |
* @param e the exponent. | |
* | |
* @return the public key. | |
*/ | |
pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) { | |
var key = { | |
n: n, | |
e: e | |
}; | |
/** | |
* Encrypts the given data with this public key. Newer applications | |
* should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for | |
* legacy applications. | |
* | |
* @param data the byte string to encrypt. | |
* @param scheme the encryption scheme to use: | |
* 'RSAES-PKCS1-V1_5' (default), | |
* 'RSA-OAEP', | |
* 'RAW', 'NONE', or null to perform raw RSA encryption, | |
* an object with an 'encode' property set to a function | |
* with the signature 'function(data, key)' that returns | |
* a binary-encoded string representing the encoded data. | |
* @param schemeOptions any scheme-specific options. | |
* | |
* @return the encrypted byte string. | |
*/ | |
key.encrypt = function(data, scheme, schemeOptions) { | |
if(typeof scheme === 'string') { | |
scheme = scheme.toUpperCase(); | |
} else if(scheme === undefined) { | |
scheme = 'RSAES-PKCS1-V1_5'; | |
} | |
if(scheme === 'RSAES-PKCS1-V1_5') { | |
scheme = { | |
encode: function(m, key, pub) { | |
return _encodePkcs1_v1_5(m, key, 0x02).getBytes(); | |
} | |
}; | |
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { | |
scheme = { | |
encode: function(m, key) { | |
return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions); | |
} | |
}; | |
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { | |
scheme = {encode: function(e) {return e;}}; | |
} else if(typeof scheme === 'string') { | |
throw new Error('Unsupported encryption scheme: "' + scheme + '".'); | |
} | |
// do scheme-based encoding then rsa encryption | |
var e = scheme.encode(data, key, true); | |
return pki.rsa.encrypt(e, key, true); | |
}; | |
/** | |
* Verifies the given signature against the given digest. | |
* | |
* PKCS#1 supports multiple (currently two) signature schemes: | |
* RSASSA-PKCS1-V1_5 and RSASSA-PSS. | |
* | |
* By default this implementation uses the "old scheme", i.e. | |
* RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the | |
* signature is an OCTET STRING that holds a DigestInfo. | |
* | |
* DigestInfo ::= SEQUENCE { | |
* digestAlgorithm DigestAlgorithmIdentifier, | |
* digest Digest | |
* } | |
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier | |
* Digest ::= OCTET STRING | |
* | |
* To perform PSS signature verification, provide an instance | |
* of Forge PSS object as the scheme parameter. | |
* | |
* @param digest the message digest hash to compare against the signature, | |
* as a binary-encoded string. | |
* @param signature the signature to verify, as a binary-encoded string. | |
* @param scheme signature verification scheme to use: | |
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, | |
* a Forge PSS object for RSASSA-PSS, | |
* 'NONE' or null for none, DigestInfo will not be expected, but | |
* PKCS#1 v1.5 padding will still be used. | |
* @param options optional verify options | |
* _parseAllDigestBytes testing flag to control parsing of all | |
* digest bytes. Unsupported and not for general usage. | |
* (default: true) | |
* | |
* @return true if the signature was verified, false if not. | |
*/ | |
key.verify = function(digest, signature, scheme, options) { | |
if(typeof scheme === 'string') { | |
scheme = scheme.toUpperCase(); | |
} else if(scheme === undefined) { | |
scheme = 'RSASSA-PKCS1-V1_5'; | |
} | |
if(options === undefined) { | |
options = { | |
_parseAllDigestBytes: true | |
}; | |
} | |
if(!('_parseAllDigestBytes' in options)) { | |
options._parseAllDigestBytes = true; | |
} | |
if(scheme === 'RSASSA-PKCS1-V1_5') { | |
scheme = { | |
verify: function(digest, d) { | |
// remove padding | |
d = _decodePkcs1_v1_5(d, key, true); | |
// d is ASN.1 BER-encoded DigestInfo | |
var obj = asn1.fromDer(d, { | |
parseAllBytes: options._parseAllDigestBytes | |
}); | |
// validate DigestInfo | |
var capture = {}; | |
var errors = []; | |
if(!asn1.validate(obj, digestInfoValidator, capture, errors)) { | |
var error = new Error( | |
'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' + | |
'DigestInfo value.'); | |
error.errors = errors; | |
throw error; | |
} | |
// check hash algorithm identifier | |
// see PKCS1-v1-5DigestAlgorithms in RFC 8017 | |
// FIXME: add support to vaidator for strict value choices | |
var oid = asn1.derToOid(capture.algorithmIdentifier); | |
if(!(oid === forge.oids.md2 || | |
oid === forge.oids.md5 || | |
oid === forge.oids.sha1 || | |
oid === forge.oids.sha224 || | |
oid === forge.oids.sha256 || | |
oid === forge.oids.sha384 || | |
oid === forge.oids.sha512 || | |
oid === forge.oids['sha512-224'] || | |
oid === forge.oids['sha512-256'])) { | |
var error = new Error( | |
'Unknown RSASSA-PKCS1-v1_5 DigestAlgorithm identifier.'); | |
error.oid = oid; | |
throw error; | |
} | |
// special check for md2 and md5 that NULL parameters exist | |
if(oid === forge.oids.md2 || oid === forge.oids.md5) { | |
if(!('parameters' in capture)) { | |
throw new Error( | |
'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' + | |
'DigestInfo value. ' + | |
'Missing algorithm identifer NULL parameters.'); | |
} | |
} | |
// compare the given digest to the decrypted one | |
return digest === capture.digest; | |
} | |
}; | |
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { | |
scheme = { | |
verify: function(digest, d) { | |
// remove padding | |
d = _decodePkcs1_v1_5(d, key, true); | |
return digest === d; | |
} | |
}; | |
} | |
// do rsa decryption w/o any decoding, then verify -- which does decoding | |
var d = pki.rsa.decrypt(signature, key, true, false); | |
return scheme.verify(digest, d, key.n.bitLength()); | |
}; | |
return key; | |
}; | |
/** | |
* Sets an RSA private key from BigIntegers modulus, exponent, primes, | |
* prime exponents, and modular multiplicative inverse. | |
* | |
* @param n the modulus. | |
* @param e the public exponent. | |
* @param d the private exponent ((inverse of e) mod n). | |
* @param p the first prime. | |
* @param q the second prime. | |
* @param dP exponent1 (d mod (p-1)). | |
* @param dQ exponent2 (d mod (q-1)). | |
* @param qInv ((inverse of q) mod p) | |
* | |
* @return the private key. | |
*/ | |
pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function( | |
n, e, d, p, q, dP, dQ, qInv) { | |
var key = { | |
n: n, | |
e: e, | |
d: d, | |
p: p, | |
q: q, | |
dP: dP, | |
dQ: dQ, | |
qInv: qInv | |
}; | |
/** | |
* Decrypts the given data with this private key. The decryption scheme | |
* must match the one used to encrypt the data. | |
* | |
* @param data the byte string to decrypt. | |
* @param scheme the decryption scheme to use: | |
* 'RSAES-PKCS1-V1_5' (default), | |
* 'RSA-OAEP', | |
* 'RAW', 'NONE', or null to perform raw RSA decryption. | |
* @param schemeOptions any scheme-specific options. | |
* | |
* @return the decrypted byte string. | |
*/ | |
key.decrypt = function(data, scheme, schemeOptions) { | |
if(typeof scheme === 'string') { | |
scheme = scheme.toUpperCase(); | |
} else if(scheme === undefined) { | |
scheme = 'RSAES-PKCS1-V1_5'; | |
} | |
// do rsa decryption w/o any decoding | |
var d = pki.rsa.decrypt(data, key, false, false); | |
if(scheme === 'RSAES-PKCS1-V1_5') { | |
scheme = {decode: _decodePkcs1_v1_5}; | |
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { | |
scheme = { | |
decode: function(d, key) { | |
return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions); | |
} | |
}; | |
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { | |
scheme = {decode: function(d) {return d;}}; | |
} else { | |
throw new Error('Unsupported encryption scheme: "' + scheme + '".'); | |
} | |
// decode according to scheme | |
return scheme.decode(d, key, false); | |
}; | |
/** | |
* Signs the given digest, producing a signature. | |
* | |
* PKCS#1 supports multiple (currently two) signature schemes: | |
* RSASSA-PKCS1-V1_5 and RSASSA-PSS. | |
* | |
* By default this implementation uses the "old scheme", i.e. | |
* RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide | |
* an instance of Forge PSS object as the scheme parameter. | |
* | |
* @param md the message digest object with the hash to sign. | |
* @param scheme the signature scheme to use: | |
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, | |
* a Forge PSS object for RSASSA-PSS, | |
* 'NONE' or null for none, DigestInfo will not be used but | |
* PKCS#1 v1.5 padding will still be used. | |
* | |
* @return the signature as a byte string. | |
*/ | |
key.sign = function(md, scheme) { | |
/* Note: The internal implementation of RSA operations is being | |
transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy | |
code like the use of an encoding block identifier 'bt' will eventually | |
be removed. */ | |
// private key operation | |
var bt = false; | |
if(typeof scheme === 'string') { | |
scheme = scheme.toUpperCase(); | |
} | |
if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') { | |
scheme = {encode: emsaPkcs1v15encode}; | |
bt = 0x01; | |
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { | |
scheme = {encode: function() {return md;}}; | |
bt = 0x01; | |
} | |
// encode and then encrypt | |
var d = scheme.encode(md, key.n.bitLength()); | |
return pki.rsa.encrypt(d, key, bt); | |
}; | |
return key; | |
}; | |
/** | |
* Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object. | |
* | |
* @param rsaKey the ASN.1 RSAPrivateKey. | |
* | |
* @return the ASN.1 PrivateKeyInfo. | |
*/ | |
pki.wrapRsaPrivateKey = function(rsaKey) { | |
// PrivateKeyInfo | |
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
// version (0) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
asn1.integerToDer(0).getBytes()), | |
// privateKeyAlgorithm | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
asn1.create( | |
asn1.Class.UNIVERSAL, asn1.Type.OID, false, | |
asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') | |
]), | |
// PrivateKey | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, | |
asn1.toDer(rsaKey).getBytes()) | |
]); | |
}; | |
/** | |
* Converts a private key from an ASN.1 object. | |
* | |
* @param obj the ASN.1 representation of a PrivateKeyInfo containing an | |
* RSAPrivateKey or an RSAPrivateKey. | |
* | |
* @return the private key. | |
*/ | |
pki.privateKeyFromAsn1 = function(obj) { | |
// get PrivateKeyInfo | |
var capture = {}; | |
var errors = []; | |
if(asn1.validate(obj, privateKeyValidator, capture, errors)) { | |
obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey)); | |
} | |
// get RSAPrivateKey | |
capture = {}; | |
errors = []; | |
if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) { | |
var error = new Error('Cannot read private key. ' + | |
'ASN.1 object does not contain an RSAPrivateKey.'); | |
error.errors = errors; | |
throw error; | |
} | |
// Note: Version is currently ignored. | |
// capture.privateKeyVersion | |
// FIXME: inefficient, get a BigInteger that uses byte strings | |
var n, e, d, p, q, dP, dQ, qInv; | |
n = forge.util.createBuffer(capture.privateKeyModulus).toHex(); | |
e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex(); | |
d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex(); | |
p = forge.util.createBuffer(capture.privateKeyPrime1).toHex(); | |
q = forge.util.createBuffer(capture.privateKeyPrime2).toHex(); | |
dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex(); | |
dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex(); | |
qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex(); | |
// set private key | |
return pki.setRsaPrivateKey( | |
new BigInteger(n, 16), | |
new BigInteger(e, 16), | |
new BigInteger(d, 16), | |
new BigInteger(p, 16), | |
new BigInteger(q, 16), | |
new BigInteger(dP, 16), | |
new BigInteger(dQ, 16), | |
new BigInteger(qInv, 16)); | |
}; | |
/** | |
* Converts a private key to an ASN.1 RSAPrivateKey. | |
* | |
* @param key the private key. | |
* | |
* @return the ASN.1 representation of an RSAPrivateKey. | |
*/ | |
pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) { | |
// RSAPrivateKey | |
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
// version (0 = only 2 primes, 1 multiple primes) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
asn1.integerToDer(0).getBytes()), | |
// modulus (n) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.n)), | |
// publicExponent (e) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.e)), | |
// privateExponent (d) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.d)), | |
// privateKeyPrime1 (p) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.p)), | |
// privateKeyPrime2 (q) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.q)), | |
// privateKeyExponent1 (dP) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.dP)), | |
// privateKeyExponent2 (dQ) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.dQ)), | |
// coefficient (qInv) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.qInv)) | |
]); | |
}; | |
/** | |
* Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey. | |
* | |
* @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey. | |
* | |
* @return the public key. | |
*/ | |
pki.publicKeyFromAsn1 = function(obj) { | |
// get SubjectPublicKeyInfo | |
var capture = {}; | |
var errors = []; | |
if(asn1.validate(obj, publicKeyValidator, capture, errors)) { | |
// get oid | |
var oid = asn1.derToOid(capture.publicKeyOid); | |
if(oid !== pki.oids.rsaEncryption) { | |
var error = new Error('Cannot read public key. Unknown OID.'); | |
error.oid = oid; | |
throw error; | |
} | |
obj = capture.rsaPublicKey; | |
} | |
// get RSA params | |
errors = []; | |
if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) { | |
var error = new Error('Cannot read public key. ' + | |
'ASN.1 object does not contain an RSAPublicKey.'); | |
error.errors = errors; | |
throw error; | |
} | |
// FIXME: inefficient, get a BigInteger that uses byte strings | |
var n = forge.util.createBuffer(capture.publicKeyModulus).toHex(); | |
var e = forge.util.createBuffer(capture.publicKeyExponent).toHex(); | |
// set public key | |
return pki.setRsaPublicKey( | |
new BigInteger(n, 16), | |
new BigInteger(e, 16)); | |
}; | |
/** | |
* Converts a public key to an ASN.1 SubjectPublicKeyInfo. | |
* | |
* @param key the public key. | |
* | |
* @return the asn1 representation of a SubjectPublicKeyInfo. | |
*/ | |
pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) { | |
// SubjectPublicKeyInfo | |
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
// AlgorithmIdentifier | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
// algorithm | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, | |
asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), | |
// parameters (null) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') | |
]), | |
// subjectPublicKey | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ | |
pki.publicKeyToRSAPublicKey(key) | |
]) | |
]); | |
}; | |
/** | |
* Converts a public key to an ASN.1 RSAPublicKey. | |
* | |
* @param key the public key. | |
* | |
* @return the asn1 representation of a RSAPublicKey. | |
*/ | |
pki.publicKeyToRSAPublicKey = function(key) { | |
// RSAPublicKey | |
return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ | |
// modulus (n) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.n)), | |
// publicExponent (e) | |
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, | |
_bnToBytes(key.e)) | |
]); | |
}; | |
/** | |
* Encodes a message using PKCS#1 v1.5 padding. | |
* | |
* @param m the message to encode. | |
* @param key the RSA key to use. | |
* @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02 | |
* (for encryption). | |
* | |
* @return the padded byte buffer. | |
*/ | |
function _encodePkcs1_v1_5(m, key, bt) { | |
var eb = forge.util.createBuffer(); | |
// get the length of the modulus in bytes | |
var k = Math.ceil(key.n.bitLength() / 8); | |
/* use PKCS#1 v1.5 padding */ | |
if(m.length > (k - 11)) { | |
var error = new Error('Message is too long for PKCS#1 v1.5 padding.'); | |
error.length = m.length; | |
error.max = k - 11; | |
throw error; | |
} | |
/* A block type BT, a padding string PS, and the data D shall be | |
formatted into an octet string EB, the encryption block: | |
EB = 00 || BT || PS || 00 || D | |
The block type BT shall be a single octet indicating the structure of | |
the encryption block. For this version of the document it shall have | |
value 00, 01, or 02. For a private-key operation, the block type | |
shall be 00 or 01. For a public-key operation, it shall be 02. | |
The padding string PS shall consist of k-3-||D|| octets. For block | |
type 00, the octets shall have value 00; for block type 01, they | |
shall have value FF; and for block type 02, they shall be | |
pseudorandomly generated and nonzero. This makes the length of the | |
encryption block EB equal to k. */ | |
// build the encryption block | |
eb.putByte(0x00); | |
eb.putByte(bt); | |
// create the padding | |
var padNum = k - 3 - m.length; | |
var padByte; | |
// private key op | |
if(bt === 0x00 || bt === 0x01) { | |
padByte = (bt === 0x00) ? 0x00 : 0xFF; | |
for(var i = 0; i < padNum; ++i) { | |
eb.putByte(padByte); | |
} | |
} else { | |
// public key op | |
// pad with random non-zero values | |
while(padNum > 0) { | |
var numZeros = 0; | |
var padBytes = forge.random.getBytes(padNum); | |
for(var i = 0; i < padNum; ++i) { | |
padByte = padBytes.charCodeAt(i); | |
if(padByte === 0) { | |
++numZeros; | |
} else { | |
eb.putByte(padByte); | |
} | |
} | |
padNum = numZeros; | |
} | |
} | |
// zero followed by message | |
eb.putByte(0x00); | |
eb.putBytes(m); | |
return eb; | |
} | |
/** | |
* Decodes a message using PKCS#1 v1.5 padding. | |
* | |
* @param em the message to decode. | |
* @param key the RSA key to use. | |
* @param pub true if the key is a public key, false if it is private. | |
* @param ml the message length, if specified. | |
* | |
* @return the decoded bytes. | |
*/ | |
function _decodePkcs1_v1_5(em, key, pub, ml) { | |
// get the length of the modulus in bytes | |
var k = Math.ceil(key.n.bitLength() / 8); | |
/* It is an error if any of the following conditions occurs: | |
1. The encryption block EB cannot be parsed unambiguously. | |
2. The padding string PS consists of fewer than eight octets | |
or is inconsisent with the block type BT. | |
3. The decryption process is a public-key operation and the block | |
type BT is not 00 or 01, or the decryption process is a | |
private-key operation and the block type is not 02. | |
*/ | |
// parse the encryption block | |
var eb = forge.util.createBuffer(em); | |
var first = eb.getByte(); | |
var bt = eb.getByte(); | |
if(first !== 0x00 || | |
(pub && bt !== 0x00 && bt !== 0x01) || | |
(!pub && bt != 0x02) || | |
(pub && bt === 0x00 && typeof(ml) === 'undefined')) { | |
throw new Error('Encryption block is invalid.'); | |
} | |
var padNum = 0; | |
if(bt === 0x00) { | |
// check all padding bytes for 0x00 | |
padNum = k - 3 - ml; | |
for(var i = 0; i < padNum; ++i) { | |
if(eb.getByte() !== 0x00) { | |
throw new Error('Encryption block is invalid.'); | |
} | |
} | |
} else if(bt === 0x01) { | |
// find the first byte that isn't 0xFF, should be after all padding | |
padNum = 0; | |
while(eb.length() > 1) { | |
if(eb.getByte() !== 0xFF) { | |
--eb.read; | |
break; | |
} | |
++padNum; | |
} | |
} else if(bt === 0x02) { | |
// look for 0x00 byte | |
padNum = 0; | |
while(eb.length() > 1) { | |
if(eb.getByte() === 0x00) { | |
--eb.read; | |
break; | |
} | |
++padNum; | |
} | |
} | |
// zero must be 0x00 and padNum must be (k - 3 - message length) | |
var zero = eb.getByte(); | |
if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) { | |
throw new Error('Encryption block is invalid.'); | |
} | |
return eb.getBytes(); | |
} | |
/** | |
* Runs the key-generation algorithm asynchronously, either in the background | |
* via Web Workers, or using the main thread and setImmediate. | |
* | |
* @param state the key-pair generation state. | |
* @param [options] options for key-pair generation: | |
* workerScript the worker script URL. | |
* workers the number of web workers (if supported) to use, | |
* (default: 2, -1 to use estimated cores minus one). | |
* workLoad the size of the work load, ie: number of possible prime | |
* numbers for each web worker to check per work assignment, | |
* (default: 100). | |
* @param callback(err, keypair) called once the operation completes. | |
*/ | |
function _generateKeyPair(state, options, callback) { | |
if(typeof options === 'function') { | |
callback = options; | |
options = {}; | |
} | |
options = options || {}; | |
var opts = { | |
algorithm: { | |
name: options.algorithm || 'PRIMEINC', | |
options: { | |
workers: options.workers || 2, | |
workLoad: options.workLoad || 100, | |
workerScript: options.workerScript | |
} | |
} | |
}; | |
if('prng' in options) { | |
opts.prng = options.prng; | |
} | |
generate(); | |
function generate() { | |
// find p and then q (done in series to simplify) | |
getPrime(state.pBits, function(err, num) { | |
if(err) { | |
return callback(err); | |
} | |
state.p = num; | |
if(state.q !== null) { | |
return finish(err, state.q); | |
} | |
getPrime(state.qBits, finish); | |
}); | |
} | |
function getPrime(bits, callback) { | |
forge.prime.generateProbablePrime(bits, opts, callback); | |
} | |
function finish(err, num) { | |
if(err) { | |
return callback(err); | |
} | |
// set q | |
state.q = num; | |
// ensure p is larger than q (swap them if not) | |
if(state.p.compareTo(state.q) < 0) { | |
var tmp = state.p; | |
state.p = state.q; | |
state.q = tmp; | |
} | |
// ensure p is coprime with e | |
if(state.p.subtract(BigInteger.ONE).gcd(state.e) | |
.compareTo(BigInteger.ONE) !== 0) { | |
state.p = null; | |
generate(); | |
return; | |
} | |
// ensure q is coprime with e | |
if(state.q.subtract(BigInteger.ONE).gcd(state.e) | |
.compareTo(BigInteger.ONE) !== 0) { | |
state.q = null; | |
getPrime(state.qBits, finish); | |
return; | |
} | |
// compute phi: (p - 1)(q - 1) (Euler's totient function) | |
state.p1 = state.p.subtract(BigInteger.ONE); | |
state.q1 = state.q.subtract(BigInteger.ONE); | |
state.phi = state.p1.multiply(state.q1); | |
// ensure e and phi are coprime | |
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) { | |
// phi and e aren't coprime, so generate a new p and q | |
state.p = state.q = null; | |
generate(); | |
return; | |
} | |
// create n, ensure n is has the right number of bits | |
state.n = state.p.multiply(state.q); | |
if(state.n.bitLength() !== state.bits) { | |
// failed, get new q | |
state.q = null; | |
getPrime(state.qBits, finish); | |
return; | |
} | |
// set keys | |
var d = state.e.modInverse(state.phi); | |
state.keys = { | |
privateKey: pki.rsa.setPrivateKey( | |
state.n, state.e, d, state.p, state.q, | |
d.mod(state.p1), d.mod(state.q1), | |
state.q.modInverse(state.p)), | |
publicKey: pki.rsa.setPublicKey(state.n, state.e) | |
}; | |
callback(null, state.keys); | |
} | |
} | |
/** | |
* Converts a positive BigInteger into 2's-complement big-endian bytes. | |
* | |
* @param b the big integer to convert. | |
* | |
* @return the bytes. | |
*/ | |
function _bnToBytes(b) { | |
// prepend 0x00 if first byte >= 0x80 | |
var hex = b.toString(16); | |
if(hex[0] >= '8') { | |
hex = '00' + hex; | |
} | |
var bytes = forge.util.hexToBytes(hex); | |
// ensure integer is minimally-encoded | |
if(bytes.length > 1 && | |
// leading 0x00 for positive integer | |
((bytes.charCodeAt(0) === 0 && | |
(bytes.charCodeAt(1) & 0x80) === 0) || | |
// leading 0xFF for negative integer | |
(bytes.charCodeAt(0) === 0xFF && | |
(bytes.charCodeAt(1) & 0x80) === 0x80))) { | |
return bytes.substr(1); | |
} | |
return bytes; | |
} | |
/** | |
* Returns the required number of Miller-Rabin tests to generate a | |
* prime with an error probability of (1/2)^80. | |
* | |
* See Handbook of Applied Cryptography Chapter 4, Table 4.4. | |
* | |
* @param bits the bit size. | |
* | |
* @return the required number of iterations. | |
*/ | |
function _getMillerRabinTests(bits) { | |
if(bits <= 100) return 27; | |
if(bits <= 150) return 18; | |
if(bits <= 200) return 15; | |
if(bits <= 250) return 12; | |
if(bits <= 300) return 9; | |
if(bits <= 350) return 8; | |
if(bits <= 400) return 7; | |
if(bits <= 500) return 6; | |
if(bits <= 600) return 5; | |
if(bits <= 800) return 4; | |
if(bits <= 1250) return 3; | |
return 2; | |
} | |
/** | |
* Performs feature detection on the Node crypto interface. | |
* | |
* @param fn the feature (function) to detect. | |
* | |
* @return true if detected, false if not. | |
*/ | |
function _detectNodeCrypto(fn) { | |
return forge.util.isNodejs && typeof _crypto[fn] === 'function'; | |
} | |
/** | |
* Performs feature detection on the SubtleCrypto interface. | |
* | |
* @param fn the feature (function) to detect. | |
* | |
* @return true if detected, false if not. | |
*/ | |
function _detectSubtleCrypto(fn) { | |
return (typeof util.globalScope !== 'undefined' && | |
typeof util.globalScope.crypto === 'object' && | |
typeof util.globalScope.crypto.subtle === 'object' && | |
typeof util.globalScope.crypto.subtle[fn] === 'function'); | |
} | |
/** | |
* Performs feature detection on the deprecated Microsoft Internet Explorer | |
* outdated SubtleCrypto interface. This function should only be used after | |
* checking for the modern, standard SubtleCrypto interface. | |
* | |
* @param fn the feature (function) to detect. | |
* | |
* @return true if detected, false if not. | |
*/ | |
function _detectSubtleMsCrypto(fn) { | |
return (typeof util.globalScope !== 'undefined' && | |
typeof util.globalScope.msCrypto === 'object' && | |
typeof util.globalScope.msCrypto.subtle === 'object' && | |
typeof util.globalScope.msCrypto.subtle[fn] === 'function'); | |
} | |
function _intToUint8Array(x) { | |
var bytes = forge.util.hexToBytes(x.toString(16)); | |
var buffer = new Uint8Array(bytes.length); | |
for(var i = 0; i < bytes.length; ++i) { | |
buffer[i] = bytes.charCodeAt(i); | |
} | |
return buffer; | |
} | |
function _privateKeyFromJwk(jwk) { | |
if(jwk.kty !== 'RSA') { | |
throw new Error( | |
'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".'); | |
} | |
return pki.setRsaPrivateKey( | |
_base64ToBigInt(jwk.n), | |
_base64ToBigInt(jwk.e), | |
_base64ToBigInt(jwk.d), | |
_base64ToBigInt(jwk.p), | |
_base64ToBigInt(jwk.q), | |
_base64ToBigInt(jwk.dp), | |
_base64ToBigInt(jwk.dq), | |
_base64ToBigInt(jwk.qi)); | |
} | |
function _publicKeyFromJwk(jwk) { | |
if(jwk.kty !== 'RSA') { | |
throw new Error('Key algorithm must be "RSA".'); | |
} | |
return pki.setRsaPublicKey( | |
_base64ToBigInt(jwk.n), | |
_base64ToBigInt(jwk.e)); | |
} | |
function _base64ToBigInt(b64) { | |
return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16); | |
} | |