vyshnavi6553
commited on
Commit
·
518171d
1
Parent(s):
88991cc
adding files
Browse files- .gitattributes +1 -0
- Dockerfile +29 -0
- app/Hackathon_setup/__init__.py +0 -0
- app/Hackathon_setup/exp_recognition.py +71 -0
- app/Hackathon_setup/exp_recognition_model.py +31 -0
- app/Hackathon_setup/face_recognition.py +113 -0
- app/Hackathon_setup/face_recognition_model.py +76 -0
- app/Hackathon_setup/haarcascade_eye.xml +0 -0
- app/Hackathon_setup/haarcascade_frontalface_default.xml +0 -0
- app/Hackathon_setup/lbpcascade_frontalface.xml +1505 -0
- app/Hackathon_setup/siamese_model.t7 +3 -0
- app/__init__.py +1 -0
- app/config.py +25 -0
- app/main.py +148 -0
- app/static/Person1_1697805233.jpg +0 -0
- app/templates/expr_recognition.html +32 -0
- app/templates/face_recognition.html +32 -0
- app/templates/index.html +29 -0
- app/templates/predict_expr_recognition.html +37 -0
- app/templates/predict_face_recognition.html +37 -0
- app/templates/predict_similarity.html +38 -0
- app/templates/similarity.html +35 -0
- requirements.txt +17 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.t7 filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
COPY requirements.txt requirements.txt
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
6 |
+
bzip2 \
|
7 |
+
g++ \
|
8 |
+
git \
|
9 |
+
graphviz \
|
10 |
+
libgl1-mesa-glx \
|
11 |
+
libhdf5-dev \
|
12 |
+
openmpi-bin \
|
13 |
+
wget \
|
14 |
+
python3-tk && \
|
15 |
+
rm -rf /var/lib/apt/lists/*
|
16 |
+
|
17 |
+
RUN pip install --upgrade pip
|
18 |
+
|
19 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
20 |
+
|
21 |
+
RUN useradd -m -u 1000 myuser
|
22 |
+
|
23 |
+
USER myuser
|
24 |
+
|
25 |
+
COPY --chown=myuser app app
|
26 |
+
|
27 |
+
EXPOSE 8001
|
28 |
+
|
29 |
+
CMD ["python", "app/main.py"]
|
app/Hackathon_setup/__init__.py
ADDED
File without changes
|
app/Hackathon_setup/exp_recognition.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
import torch
|
5 |
+
# In the below line,remove '.' while working on your local system.However Make sure that '.' is present before face_recognition_model while uploading to the server, Do not remove it.
|
6 |
+
from .exp_recognition_model import *
|
7 |
+
from PIL import Image
|
8 |
+
import base64
|
9 |
+
import io
|
10 |
+
import os
|
11 |
+
## Add more imports if required
|
12 |
+
|
13 |
+
#############################################################################################################################
|
14 |
+
# Caution: Don't change any of the filenames, function names and definitions #
|
15 |
+
# Always use the current_path + file_name for refering any files, without it we cannot access files on the server #
|
16 |
+
#############################################################################################################################
|
17 |
+
|
18 |
+
# Current_path stores absolute path of the file from where it runs.
|
19 |
+
current_path = os.path.dirname(os.path.abspath(__file__))
|
20 |
+
|
21 |
+
|
22 |
+
#1) The below function is used to detect faces in the given image.
|
23 |
+
#2) It returns only one image which has maximum area out of all the detected faces in the photo.
|
24 |
+
#3) If no face is detected,then it returns zero(0).
|
25 |
+
|
26 |
+
def detected_face(image):
|
27 |
+
eye_haar = current_path + '/haarcascade_eye.xml'
|
28 |
+
face_haar = current_path + '/haarcascade_frontalface_default.xml'
|
29 |
+
face_cascade = cv2.CascadeClassifier(face_haar)
|
30 |
+
eye_cascade = cv2.CascadeClassifier(eye_haar)
|
31 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
32 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
33 |
+
face_areas=[]
|
34 |
+
images = []
|
35 |
+
required_image=0
|
36 |
+
for i, (x,y,w,h) in enumerate(faces):
|
37 |
+
face_cropped = gray[y:y+h, x:x+w]
|
38 |
+
face_areas.append(w*h)
|
39 |
+
images.append(face_cropped)
|
40 |
+
required_image = images[np.argmax(face_areas)]
|
41 |
+
required_image = Image.fromarray(required_image)
|
42 |
+
return required_image
|
43 |
+
|
44 |
+
|
45 |
+
#1) Images captured from mobile is passed as parameter to the below function in the API call, It returns the Expression detected by your network.
|
46 |
+
#2) The image is passed to the function in base64 encoding, Code for decoding the image is provided within the function.
|
47 |
+
#3) Define an object to your network here in the function and load the weight from the trained network, set it in evaluation mode.
|
48 |
+
#4) Perform necessary transformations to the input(detected face using the above function), this should return the Expression in string form ex: "Anger"
|
49 |
+
#5) For loading your model use the current_path+'your model file name', anyhow detailed example is given in comments to the function
|
50 |
+
##Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function
|
51 |
+
def get_expression(img):
|
52 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
53 |
+
|
54 |
+
##########################################################################################
|
55 |
+
##Example for loading a model using weight state dictionary: ##
|
56 |
+
## face_det_net = facExpRec() #Example Network ##
|
57 |
+
## model = torch.load(current_path + '/exp_recognition_net.t7', map_location=device) ##
|
58 |
+
## face_det_net.load_state_dict(model['net_dict']) ##
|
59 |
+
## ##
|
60 |
+
##current_path + '/<network_definition>' is path of the saved model if present in ##
|
61 |
+
##the same path as this file, we recommend to put in the same directory ##
|
62 |
+
##########################################################################################
|
63 |
+
##########################################################################################
|
64 |
+
|
65 |
+
face = detected_face(img)
|
66 |
+
if face==0:
|
67 |
+
face = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
|
68 |
+
|
69 |
+
# YOUR CODE HERE, return expression using your model
|
70 |
+
|
71 |
+
return "YET TO BE CODED"
|
app/Hackathon_setup/exp_recognition_model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
## Add more imports if required
|
6 |
+
|
7 |
+
####################################################################################################################
|
8 |
+
# Define your model and transform and all necessary helper functions here #
|
9 |
+
# They will be imported to the exp_recognition.py file #
|
10 |
+
####################################################################################################################
|
11 |
+
|
12 |
+
# Definition of classes as dictionary
|
13 |
+
classes = {0: 'ANGER', 1: 'DISGUST', 2: 'FEAR', 3: 'HAPPINESS', 4: 'NEUTRAL', 5: 'SADNESS', 6: 'SURPRISE'}
|
14 |
+
|
15 |
+
# Example Network
|
16 |
+
class facExpRec(torch.nn.Module):
|
17 |
+
def __init__(self):
|
18 |
+
pass # remove 'pass' once you have written your code
|
19 |
+
#YOUR CODE HERE
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
pass # remove 'pass' once you have written your code
|
23 |
+
#YOUR CODE HERE
|
24 |
+
|
25 |
+
# Sample Helper function
|
26 |
+
def rgb2gray(image):
|
27 |
+
return image.convert('L')
|
28 |
+
|
29 |
+
# Sample Transformation function
|
30 |
+
#YOUR CODE HERE for changing the Transformation values.
|
31 |
+
trnscm = transforms.Compose([rgb2gray, transforms.Resize((48,48)), transforms.ToTensor()])
|
app/Hackathon_setup/face_recognition.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
import torch
|
5 |
+
# In the below line,remove '.' while working on your local system. However Make sure that '.' is present before face_recognition_model while uploading to the server, Do not remove it.
|
6 |
+
from .face_recognition_model import *
|
7 |
+
from PIL import Image
|
8 |
+
import base64
|
9 |
+
import io
|
10 |
+
import os
|
11 |
+
import joblib
|
12 |
+
import pickle
|
13 |
+
# Add more imports if required
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
###########################################################################################################################################
|
18 |
+
# Caution: Don't change any of the filenames, function names and definitions #
|
19 |
+
# Always use the current_path + file_name for refering any files, without it we cannot access files on the server #
|
20 |
+
###########################################################################################################################################
|
21 |
+
|
22 |
+
# Current_path stores absolute path of the file from where it runs.
|
23 |
+
current_path = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
|
25 |
+
#1) The below function is used to detect faces in the given image.
|
26 |
+
#2) It returns only one image which has maximum area out of all the detected faces in the photo.
|
27 |
+
#3) If no face is detected,then it returns zero(0).
|
28 |
+
|
29 |
+
def detected_face(image):
|
30 |
+
eye_haar = current_path + '/haarcascade_eye.xml'
|
31 |
+
face_haar = current_path + '/haarcascade_frontalface_default.xml'
|
32 |
+
face_cascade = cv2.CascadeClassifier(face_haar)
|
33 |
+
eye_cascade = cv2.CascadeClassifier(eye_haar)
|
34 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
35 |
+
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
36 |
+
face_areas=[]
|
37 |
+
images = []
|
38 |
+
required_image=0
|
39 |
+
for i, (x,y,w,h) in enumerate(faces):
|
40 |
+
face_cropped = gray[y:y+h, x:x+w]
|
41 |
+
face_areas.append(w*h)
|
42 |
+
images.append(face_cropped)
|
43 |
+
required_image = images[np.argmax(face_areas)]
|
44 |
+
required_image = Image.fromarray(required_image)
|
45 |
+
return required_image
|
46 |
+
|
47 |
+
|
48 |
+
#1) Images captured from mobile is passed as parameter to the below function in the API call. It returns the similarity measure between given images.
|
49 |
+
#2) The image is passed to the function in base64 encoding, Code for decoding the image is provided within the function.
|
50 |
+
#3) Define an object to your siamese network here in the function and load the weight from the trained network, set it in evaluation mode.
|
51 |
+
#4) Get the features for both the faces from the network and return the similarity measure, Euclidean,cosine etc can be it. But choose the Relevant measure.
|
52 |
+
#5) For loading your model use the current_path+'your model file name', anyhow detailed example is given in comments to the function
|
53 |
+
#Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function
|
54 |
+
def get_similarity(img1, img2):
|
55 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
56 |
+
|
57 |
+
det_img1 = detected_face(img1)
|
58 |
+
det_img2 = detected_face(img2)
|
59 |
+
if(det_img1 == 0 or det_img2 == 0):
|
60 |
+
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
61 |
+
det_img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY))
|
62 |
+
face1 = trnscm(det_img1).unsqueeze(0)
|
63 |
+
face2 = trnscm(det_img2).unsqueeze(0)
|
64 |
+
model = face_recognition_model.Net() # Instantiate your model here
|
65 |
+
ckpt = torch.load(BASE_DIR + "app/Hackathon_setup/siamese_model.t7", map_location=device)
|
66 |
+
model.load_state_dict(ckpt['net_dict'])
|
67 |
+
model.to(device)
|
68 |
+
model.eval()
|
69 |
+
# YOUR CODE HERE, return similarity measure using your model
|
70 |
+
with torch.no_grad():
|
71 |
+
embeddings1 = model(face1)
|
72 |
+
embeddings2 = model(face2)
|
73 |
+
|
74 |
+
# Calculate the similarity measure (cosine similarity, for example) between the two embeddings
|
75 |
+
similarity_score = torch.nn.functional.cosine_similarity(embeddings1, embeddings2)
|
76 |
+
|
77 |
+
# Return the similarity score
|
78 |
+
return similarity_score.item()
|
79 |
+
|
80 |
+
|
81 |
+
#1) Image captured from mobile is passed as parameter to this function in the API call, It returns the face class in the string form ex: "Person1"
|
82 |
+
#2) The image is passed to the function in base64 encoding, Code to decode the image provided within the function
|
83 |
+
#3) Define an object to your network here in the function and load the weight from the trained network, set it in evaluation mode
|
84 |
+
#4) Perform necessary transformations to the input(detected face using the above function).
|
85 |
+
#5) Along with the siamese, you need the classifier as well, which is to be finetuned with the faces that you are training
|
86 |
+
##Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function
|
87 |
+
def get_face_class(img1):
|
88 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
89 |
+
|
90 |
+
det_img1 = detected_face(img1)
|
91 |
+
if(det_img1 == 0):
|
92 |
+
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
93 |
+
|
94 |
+
face_transform = transforms.Compose([
|
95 |
+
transforms.Resize((100, 100)), # Resize your images to the model's input size
|
96 |
+
transforms.ToTensor(),
|
97 |
+
# Add any other necessary preprocessing steps here
|
98 |
+
])
|
99 |
+
|
100 |
+
face1 = face_transform(det_img1).unsqueeze(0).to(device)
|
101 |
+
siamese_model = face_recognition_model.Net() # Instantiate your Siamese model here
|
102 |
+
ckpt = torch.load(BASE_DIR + "app/Hackathon_setup/siamese_model.t7", map_location=device)
|
103 |
+
siamese_model.load_state_dict(ckpt['net_dict'])
|
104 |
+
siamese_model.to(device)
|
105 |
+
siamese_model.eval()
|
106 |
+
|
107 |
+
# Obtain feature embeddings using the Siamese model
|
108 |
+
with torch.no_grad():
|
109 |
+
embeddings1 = siamese_model(face1)
|
110 |
+
##YOUR CODE HERE, return face class here
|
111 |
+
##Hint: you need a classifier finetuned for your classes, it takes o/p of siamese as i/p to it
|
112 |
+
##Better Hint: Siamese experiment is covered in one of the labs
|
113 |
+
return predicted_class.item()
|
app/Hackathon_setup/face_recognition_model.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torchvision import transforms
|
7 |
+
from torch.utils.data import DataLoader,Dataset
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import torchvision.utils
|
10 |
+
import numpy as np
|
11 |
+
import random
|
12 |
+
import cv2
|
13 |
+
from PIL import Image
|
14 |
+
from torch.autograd import Variable
|
15 |
+
import PIL.ImageOps
|
16 |
+
import torch.nn as nn
|
17 |
+
from torch import optim
|
18 |
+
# Add more imports if required
|
19 |
+
|
20 |
+
# Sample Transformation function
|
21 |
+
# YOUR CODE HERE for changing the Transformation values.
|
22 |
+
trnscm = transforms.Compose([transforms.Resize((100,100)), transforms.ToTensor()])
|
23 |
+
|
24 |
+
##Example Network
|
25 |
+
class Siamese(torch.nn.Module):
|
26 |
+
def __init__(self):
|
27 |
+
super(Siamese, self).__init__()
|
28 |
+
self.cnn1 = nn.Sequential(
|
29 |
+
nn.ReflectionPad2d(1),
|
30 |
+
nn.Conv2d(1, 4, kernel_size=3),
|
31 |
+
nn.ReLU(inplace=True),
|
32 |
+
nn.BatchNorm2d(4),
|
33 |
+
|
34 |
+
nn.ReflectionPad2d(1),
|
35 |
+
nn.Conv2d(4, 8, kernel_size=3),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
nn.BatchNorm2d(8),
|
38 |
+
|
39 |
+
|
40 |
+
nn.ReflectionPad2d(1),
|
41 |
+
nn.Conv2d(8, 8, kernel_size=3),
|
42 |
+
nn.ReLU(inplace=True),
|
43 |
+
nn.BatchNorm2d(8),
|
44 |
+
)
|
45 |
+
|
46 |
+
self.fc1 = nn.Sequential(
|
47 |
+
nn.Linear(8*100*100, 500),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
|
50 |
+
nn.Linear(500, 500),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
|
53 |
+
nn.Linear(500, 5))
|
54 |
+
|
55 |
+
|
56 |
+
def forward_once(self, x):
|
57 |
+
output = self.cnn1(x)
|
58 |
+
output = output.view(output.size()[0], -1)
|
59 |
+
output = self.fc1(output)
|
60 |
+
return output
|
61 |
+
|
62 |
+
def forward(self, input1, input2):
|
63 |
+
output1 = self.forward_once(input1)
|
64 |
+
output2 = self.forward_once(input2)
|
65 |
+
return output1, output2
|
66 |
+
|
67 |
+
|
68 |
+
##########################################################################################################
|
69 |
+
## Sample classification network (Specify if you are using a pytorch classifier during the training) ##
|
70 |
+
## classifier = nn.Sequential(nn.Linear(64, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear...) ##
|
71 |
+
##########################################################################################################
|
72 |
+
|
73 |
+
# YOUR CODE HERE for pytorch classifier
|
74 |
+
|
75 |
+
# Definition of classes as dictionary
|
76 |
+
classes = ['person1','person2','person3','person4','person5','person6','person7']
|
app/Hackathon_setup/haarcascade_eye.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/Hackathon_setup/haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/Hackathon_setup/lbpcascade_frontalface.xml
ADDED
@@ -0,0 +1,1505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<!--
|
3 |
+
number of positive samples 3000
|
4 |
+
number of negative samples 1500
|
5 |
+
-->
|
6 |
+
<opencv_storage>
|
7 |
+
<cascade type_id="opencv-cascade-classifier">
|
8 |
+
<stageType>BOOST</stageType>
|
9 |
+
<featureType>LBP</featureType>
|
10 |
+
<height>24</height>
|
11 |
+
<width>24</width>
|
12 |
+
<stageParams>
|
13 |
+
<boostType>GAB</boostType>
|
14 |
+
<minHitRate>0.9950000047683716</minHitRate>
|
15 |
+
<maxFalseAlarm>0.5000000000000000</maxFalseAlarm>
|
16 |
+
<weightTrimRate>0.9500000000000000</weightTrimRate>
|
17 |
+
<maxDepth>1</maxDepth>
|
18 |
+
<maxWeakCount>100</maxWeakCount></stageParams>
|
19 |
+
<featureParams>
|
20 |
+
<maxCatCount>256</maxCatCount></featureParams>
|
21 |
+
<stageNum>20</stageNum>
|
22 |
+
<stages>
|
23 |
+
<!-- stage 0 -->
|
24 |
+
<_>
|
25 |
+
<maxWeakCount>3</maxWeakCount>
|
26 |
+
<stageThreshold>-0.7520892024040222</stageThreshold>
|
27 |
+
<weakClassifiers>
|
28 |
+
<!-- tree 0 -->
|
29 |
+
<_>
|
30 |
+
<internalNodes>
|
31 |
+
0 -1 46 -67130709 -21569 -1426120013 -1275125205 -21585
|
32 |
+
-16385 587145899 -24005</internalNodes>
|
33 |
+
<leafValues>
|
34 |
+
-0.6543210148811340 0.8888888955116272</leafValues></_>
|
35 |
+
<!-- tree 1 -->
|
36 |
+
<_>
|
37 |
+
<internalNodes>
|
38 |
+
0 -1 13 -163512766 -769593758 -10027009 -262145 -514457854
|
39 |
+
-193593353 -524289 -1</internalNodes>
|
40 |
+
<leafValues>
|
41 |
+
-0.7739216089248657 0.7278633713722229</leafValues></_>
|
42 |
+
<!-- tree 2 -->
|
43 |
+
<_>
|
44 |
+
<internalNodes>
|
45 |
+
0 -1 2 -363936790 -893203669 -1337948010 -136907894
|
46 |
+
1088782736 -134217726 -741544961 -1590337</internalNodes>
|
47 |
+
<leafValues>
|
48 |
+
-0.7068563103675842 0.6761534214019775</leafValues></_></weakClassifiers></_>
|
49 |
+
<!-- stage 1 -->
|
50 |
+
<_>
|
51 |
+
<maxWeakCount>4</maxWeakCount>
|
52 |
+
<stageThreshold>-0.4872078299522400</stageThreshold>
|
53 |
+
<weakClassifiers>
|
54 |
+
<!-- tree 0 -->
|
55 |
+
<_>
|
56 |
+
<internalNodes>
|
57 |
+
0 -1 84 2147483647 1946124287 -536870913 2147450879
|
58 |
+
738132490 1061101567 243204619 2147446655</internalNodes>
|
59 |
+
<leafValues>
|
60 |
+
-0.8083735704421997 0.7685696482658386</leafValues></_>
|
61 |
+
<!-- tree 1 -->
|
62 |
+
<_>
|
63 |
+
<internalNodes>
|
64 |
+
0 -1 21 2147483647 263176079 1879048191 254749487 1879048191
|
65 |
+
-134252545 -268435457 801111999</internalNodes>
|
66 |
+
<leafValues>
|
67 |
+
-0.7698410153388977 0.6592915654182434</leafValues></_>
|
68 |
+
<!-- tree 2 -->
|
69 |
+
<_>
|
70 |
+
<internalNodes>
|
71 |
+
0 -1 106 -98110272 1610939566 -285484400 -850010381
|
72 |
+
-189334372 -1671954433 -571026695 -262145</internalNodes>
|
73 |
+
<leafValues>
|
74 |
+
-0.7506558895111084 0.5444605946540833</leafValues></_>
|
75 |
+
<!-- tree 3 -->
|
76 |
+
<_>
|
77 |
+
<internalNodes>
|
78 |
+
0 -1 48 -798690576 -131075 1095771153 -237144073 -65569 -1
|
79 |
+
-216727745 -69206049</internalNodes>
|
80 |
+
<leafValues>
|
81 |
+
-0.7775990366935730 0.5465461611747742</leafValues></_></weakClassifiers></_>
|
82 |
+
<!-- stage 2 -->
|
83 |
+
<_>
|
84 |
+
<maxWeakCount>4</maxWeakCount>
|
85 |
+
<stageThreshold>-1.1592328548431396</stageThreshold>
|
86 |
+
<weakClassifiers>
|
87 |
+
<!-- tree 0 -->
|
88 |
+
<_>
|
89 |
+
<internalNodes>
|
90 |
+
0 -1 47 -21585 -20549 -100818262 -738254174 -20561 -36865
|
91 |
+
-151016790 -134238549</internalNodes>
|
92 |
+
<leafValues>
|
93 |
+
-0.5601882934570313 0.7743113040924072</leafValues></_>
|
94 |
+
<!-- tree 1 -->
|
95 |
+
<_>
|
96 |
+
<internalNodes>
|
97 |
+
0 -1 12 -286003217 183435247 -268994614 -421330945
|
98 |
+
-402686081 1090387966 -286785545 -402653185</internalNodes>
|
99 |
+
<leafValues>
|
100 |
+
-0.6124526262283325 0.6978127956390381</leafValues></_>
|
101 |
+
<!-- tree 2 -->
|
102 |
+
<_>
|
103 |
+
<internalNodes>
|
104 |
+
0 -1 26 -50347012 970882927 -50463492 -1253377 -134218251
|
105 |
+
-50364513 -33619992 -172490753</internalNodes>
|
106 |
+
<leafValues>
|
107 |
+
-0.6114496588706970 0.6537628173828125</leafValues></_>
|
108 |
+
<!-- tree 3 -->
|
109 |
+
<_>
|
110 |
+
<internalNodes>
|
111 |
+
0 -1 8 -273 -135266321 1877977738 -2088243418 -134217987
|
112 |
+
2146926575 -18910642 1095231247</internalNodes>
|
113 |
+
<leafValues>
|
114 |
+
-0.6854077577590942 0.5403239130973816</leafValues></_></weakClassifiers></_>
|
115 |
+
<!-- stage 3 -->
|
116 |
+
<_>
|
117 |
+
<maxWeakCount>5</maxWeakCount>
|
118 |
+
<stageThreshold>-0.7562355995178223</stageThreshold>
|
119 |
+
<weakClassifiers>
|
120 |
+
<!-- tree 0 -->
|
121 |
+
<_>
|
122 |
+
<internalNodes>
|
123 |
+
0 -1 96 -1273 1870659519 -20971602 -67633153 -134250731
|
124 |
+
2004875127 -250 -150995969</internalNodes>
|
125 |
+
<leafValues>
|
126 |
+
-0.4051094949245453 0.7584033608436585</leafValues></_>
|
127 |
+
<!-- tree 1 -->
|
128 |
+
<_>
|
129 |
+
<internalNodes>
|
130 |
+
0 -1 33 -868162224 -76810262 -4262145 -257 1465211989
|
131 |
+
-268959873 -2656269 -524289</internalNodes>
|
132 |
+
<leafValues>
|
133 |
+
-0.7388162612915039 0.5340843200683594</leafValues></_>
|
134 |
+
<!-- tree 2 -->
|
135 |
+
<_>
|
136 |
+
<internalNodes>
|
137 |
+
0 -1 57 -12817 -49 -541103378 -152950 -38993 -20481 -1153876
|
138 |
+
-72478976</internalNodes>
|
139 |
+
<leafValues>
|
140 |
+
-0.6582943797111511 0.5339496731758118</leafValues></_>
|
141 |
+
<!-- tree 3 -->
|
142 |
+
<_>
|
143 |
+
<internalNodes>
|
144 |
+
0 -1 125 -269484161 -452984961 -319816180 -1594032130 -2111
|
145 |
+
-990117891 -488975296 -520947741</internalNodes>
|
146 |
+
<leafValues>
|
147 |
+
-0.5981323719024658 0.5323504805564880</leafValues></_>
|
148 |
+
<!-- tree 4 -->
|
149 |
+
<_>
|
150 |
+
<internalNodes>
|
151 |
+
0 -1 53 557787431 670265215 -1342193665 -1075892225
|
152 |
+
1998528318 1056964607 -33570977 -1</internalNodes>
|
153 |
+
<leafValues>
|
154 |
+
-0.6498787999153137 0.4913350641727448</leafValues></_></weakClassifiers></_>
|
155 |
+
<!-- stage 4 -->
|
156 |
+
<_>
|
157 |
+
<maxWeakCount>5</maxWeakCount>
|
158 |
+
<stageThreshold>-0.8085358142852783</stageThreshold>
|
159 |
+
<weakClassifiers>
|
160 |
+
<!-- tree 0 -->
|
161 |
+
<_>
|
162 |
+
<internalNodes>
|
163 |
+
0 -1 60 -536873708 880195381 -16842788 -20971521 -176687276
|
164 |
+
-168427659 -16777260 -33554626</internalNodes>
|
165 |
+
<leafValues>
|
166 |
+
-0.5278195738792419 0.6946372389793396</leafValues></_>
|
167 |
+
<!-- tree 1 -->
|
168 |
+
<_>
|
169 |
+
<internalNodes>
|
170 |
+
0 -1 7 -1 -62981529 -1090591130 805330978 -8388827 -41945787
|
171 |
+
-39577 -531118985</internalNodes>
|
172 |
+
<leafValues>
|
173 |
+
-0.5206505060195923 0.6329920291900635</leafValues></_>
|
174 |
+
<!-- tree 2 -->
|
175 |
+
<_>
|
176 |
+
<internalNodes>
|
177 |
+
0 -1 98 -725287348 1347747543 -852489 -16809993 1489881036
|
178 |
+
-167903241 -1 -1</internalNodes>
|
179 |
+
<leafValues>
|
180 |
+
-0.7516061067581177 0.4232024252414703</leafValues></_>
|
181 |
+
<!-- tree 3 -->
|
182 |
+
<_>
|
183 |
+
<internalNodes>
|
184 |
+
0 -1 44 -32777 1006582562 -65 935312171 -8388609 -1078198273
|
185 |
+
-1 733886267</internalNodes>
|
186 |
+
<leafValues>
|
187 |
+
-0.7639313936233521 0.4123568832874298</leafValues></_>
|
188 |
+
<!-- tree 4 -->
|
189 |
+
<_>
|
190 |
+
<internalNodes>
|
191 |
+
0 -1 24 -85474705 2138828511 -1036436754 817625855
|
192 |
+
1123369029 -58796809 -1013468481 -194513409</internalNodes>
|
193 |
+
<leafValues>
|
194 |
+
-0.5123769044876099 0.5791834592819214</leafValues></_></weakClassifiers></_>
|
195 |
+
<!-- stage 5 -->
|
196 |
+
<_>
|
197 |
+
<maxWeakCount>5</maxWeakCount>
|
198 |
+
<stageThreshold>-0.5549971461296082</stageThreshold>
|
199 |
+
<weakClassifiers>
|
200 |
+
<!-- tree 0 -->
|
201 |
+
<_>
|
202 |
+
<internalNodes>
|
203 |
+
0 -1 42 -17409 -20481 -268457797 -134239493 -17473 -1 -21829
|
204 |
+
-21846</internalNodes>
|
205 |
+
<leafValues>
|
206 |
+
-0.3763174116611481 0.7298233509063721</leafValues></_>
|
207 |
+
<!-- tree 1 -->
|
208 |
+
<_>
|
209 |
+
<internalNodes>
|
210 |
+
0 -1 6 -805310737 -2098262358 -269504725 682502698
|
211 |
+
2147483519 1740574719 -1090519233 -268472385</internalNodes>
|
212 |
+
<leafValues>
|
213 |
+
-0.5352765917778015 0.5659480094909668</leafValues></_>
|
214 |
+
<!-- tree 2 -->
|
215 |
+
<_>
|
216 |
+
<internalNodes>
|
217 |
+
0 -1 61 -67109678 -6145 -8 -87884584 -20481 -1073762305
|
218 |
+
-50856216 -16849696</internalNodes>
|
219 |
+
<leafValues>
|
220 |
+
-0.5678374171257019 0.4961479902267456</leafValues></_>
|
221 |
+
<!-- tree 3 -->
|
222 |
+
<_>
|
223 |
+
<internalNodes>
|
224 |
+
0 -1 123 -138428633 1002418167 -1359008245 -1908670465
|
225 |
+
-1346685918 910098423 -1359010520 -1346371657</internalNodes>
|
226 |
+
<leafValues>
|
227 |
+
-0.5706262588500977 0.4572288393974304</leafValues></_>
|
228 |
+
<!-- tree 4 -->
|
229 |
+
<_>
|
230 |
+
<internalNodes>
|
231 |
+
0 -1 9 -89138513 -4196353 1256531674 -1330665426 1216308261
|
232 |
+
-36190633 33498198 -151796633</internalNodes>
|
233 |
+
<leafValues>
|
234 |
+
-0.5344601869583130 0.4672054052352905</leafValues></_></weakClassifiers></_>
|
235 |
+
<!-- stage 6 -->
|
236 |
+
<_>
|
237 |
+
<maxWeakCount>5</maxWeakCount>
|
238 |
+
<stageThreshold>-0.8776460289955139</stageThreshold>
|
239 |
+
<weakClassifiers>
|
240 |
+
<!-- tree 0 -->
|
241 |
+
<_>
|
242 |
+
<internalNodes>
|
243 |
+
0 -1 105 1073769576 206601725 -34013449 -33554433 -789514004
|
244 |
+
-101384321 -690225153 -264193</internalNodes>
|
245 |
+
<leafValues>
|
246 |
+
-0.7700348496437073 0.5943940877914429</leafValues></_>
|
247 |
+
<!-- tree 1 -->
|
248 |
+
<_>
|
249 |
+
<internalNodes>
|
250 |
+
0 -1 30 -1432340997 -823623681 -49153 -34291724 -269484035
|
251 |
+
-1342767105 -1078198273 -1277955</internalNodes>
|
252 |
+
<leafValues>
|
253 |
+
-0.5043668746948242 0.6151274442672730</leafValues></_>
|
254 |
+
<!-- tree 2 -->
|
255 |
+
<_>
|
256 |
+
<internalNodes>
|
257 |
+
0 -1 35 -1067385040 -195758209 -436748425 -134217731
|
258 |
+
-50855988 -129 -1 -1</internalNodes>
|
259 |
+
<leafValues>
|
260 |
+
-0.6808040738105774 0.4667325913906097</leafValues></_>
|
261 |
+
<!-- tree 3 -->
|
262 |
+
<_>
|
263 |
+
<internalNodes>
|
264 |
+
0 -1 119 832534325 -34111555 -26050561 -423659521 -268468364
|
265 |
+
2105014143 -2114244 -17367185</internalNodes>
|
266 |
+
<leafValues>
|
267 |
+
-0.4927591383457184 0.5401885509490967</leafValues></_>
|
268 |
+
<!-- tree 4 -->
|
269 |
+
<_>
|
270 |
+
<internalNodes>
|
271 |
+
0 -1 82 -1089439888 -1080524865 2143059967 -1114121
|
272 |
+
-1140949004 -3 -2361356 -739516</internalNodes>
|
273 |
+
<leafValues>
|
274 |
+
-0.6445107460021973 0.4227822124958038</leafValues></_></weakClassifiers></_>
|
275 |
+
<!-- stage 7 -->
|
276 |
+
<_>
|
277 |
+
<maxWeakCount>6</maxWeakCount>
|
278 |
+
<stageThreshold>-1.1139287948608398</stageThreshold>
|
279 |
+
<weakClassifiers>
|
280 |
+
<!-- tree 0 -->
|
281 |
+
<_>
|
282 |
+
<internalNodes>
|
283 |
+
0 -1 52 -1074071553 -1074003969 -1 -1280135430 -5324817 -1
|
284 |
+
-335548482 582134442</internalNodes>
|
285 |
+
<leafValues>
|
286 |
+
-0.5307556986808777 0.6258179545402527</leafValues></_>
|
287 |
+
<!-- tree 1 -->
|
288 |
+
<_>
|
289 |
+
<internalNodes>
|
290 |
+
0 -1 99 -706937396 -705364068 -540016724 -570495027
|
291 |
+
-570630659 -587857963 -33628164 -35848193</internalNodes>
|
292 |
+
<leafValues>
|
293 |
+
-0.5227634310722351 0.5049746036529541</leafValues></_>
|
294 |
+
<!-- tree 2 -->
|
295 |
+
<_>
|
296 |
+
<internalNodes>
|
297 |
+
0 -1 18 -2035630093 42119158 -268503053 -1671444 261017599
|
298 |
+
1325432815 1954394111 -805306449</internalNodes>
|
299 |
+
<leafValues>
|
300 |
+
-0.4983572661876679 0.5106441378593445</leafValues></_>
|
301 |
+
<!-- tree 3 -->
|
302 |
+
<_>
|
303 |
+
<internalNodes>
|
304 |
+
0 -1 111 -282529488 -1558073088 1426018736 -170526448
|
305 |
+
-546832487 -5113037 -34243375 -570427929</internalNodes>
|
306 |
+
<leafValues>
|
307 |
+
-0.4990860521793366 0.5060507059097290</leafValues></_>
|
308 |
+
<!-- tree 4 -->
|
309 |
+
<_>
|
310 |
+
<internalNodes>
|
311 |
+
0 -1 92 1016332500 -606301707 915094269 -1080086049
|
312 |
+
-1837027144 -1361600280 2147318747 1067975613</internalNodes>
|
313 |
+
<leafValues>
|
314 |
+
-0.5695009231567383 0.4460467398166657</leafValues></_>
|
315 |
+
<!-- tree 5 -->
|
316 |
+
<_>
|
317 |
+
<internalNodes>
|
318 |
+
0 -1 51 -656420166 -15413034 -141599534 -603435836
|
319 |
+
1505950458 -787556946 -79823438 -1326199134</internalNodes>
|
320 |
+
<leafValues>
|
321 |
+
-0.6590405106544495 0.3616424500942230</leafValues></_></weakClassifiers></_>
|
322 |
+
<!-- stage 8 -->
|
323 |
+
<_>
|
324 |
+
<maxWeakCount>7</maxWeakCount>
|
325 |
+
<stageThreshold>-0.8243625760078430</stageThreshold>
|
326 |
+
<weakClassifiers>
|
327 |
+
<!-- tree 0 -->
|
328 |
+
<_>
|
329 |
+
<internalNodes>
|
330 |
+
0 -1 28 -901591776 -201916417 -262 -67371009 -143312112
|
331 |
+
-524289 -41943178 -1</internalNodes>
|
332 |
+
<leafValues>
|
333 |
+
-0.4972776770591736 0.6027074456214905</leafValues></_>
|
334 |
+
<!-- tree 1 -->
|
335 |
+
<_>
|
336 |
+
<internalNodes>
|
337 |
+
0 -1 112 -4507851 -411340929 -268437513 -67502145 -17350859
|
338 |
+
-32901 -71344315 -29377</internalNodes>
|
339 |
+
<leafValues>
|
340 |
+
-0.4383158981800079 0.5966237187385559</leafValues></_>
|
341 |
+
<!-- tree 2 -->
|
342 |
+
<_>
|
343 |
+
<internalNodes>
|
344 |
+
0 -1 69 -75894785 -117379438 -239063587 -12538500 1485072126
|
345 |
+
2076233213 2123118847 801906927</internalNodes>
|
346 |
+
<leafValues>
|
347 |
+
-0.6386105418205261 0.3977999985218048</leafValues></_>
|
348 |
+
<!-- tree 3 -->
|
349 |
+
<_>
|
350 |
+
<internalNodes>
|
351 |
+
0 -1 19 -823480413 786628589 -16876049 -1364262914 242165211
|
352 |
+
1315930109 -696268833 -455082829</internalNodes>
|
353 |
+
<leafValues>
|
354 |
+
-0.5512794256210327 0.4282079637050629</leafValues></_>
|
355 |
+
<!-- tree 4 -->
|
356 |
+
<_>
|
357 |
+
<internalNodes>
|
358 |
+
0 -1 73 -521411968 6746762 -1396236286 -2038436114
|
359 |
+
-185612509 57669627 -143132877 -1041235973</internalNodes>
|
360 |
+
<leafValues>
|
361 |
+
-0.6418755054473877 0.3549866080284119</leafValues></_>
|
362 |
+
<!-- tree 5 -->
|
363 |
+
<_>
|
364 |
+
<internalNodes>
|
365 |
+
0 -1 126 -478153869 1076028979 -1645895615 1365298272
|
366 |
+
-557859073 -339771473 1442574528 -1058802061</internalNodes>
|
367 |
+
<leafValues>
|
368 |
+
-0.4841901361942291 0.4668019413948059</leafValues></_>
|
369 |
+
<!-- tree 6 -->
|
370 |
+
<_>
|
371 |
+
<internalNodes>
|
372 |
+
0 -1 45 -246350404 -1650402048 -1610612745 -788400696
|
373 |
+
1467604861 -2787397 1476263935 -4481349</internalNodes>
|
374 |
+
<leafValues>
|
375 |
+
-0.5855734348297119 0.3879135847091675</leafValues></_></weakClassifiers></_>
|
376 |
+
<!-- stage 9 -->
|
377 |
+
<_>
|
378 |
+
<maxWeakCount>7</maxWeakCount>
|
379 |
+
<stageThreshold>-1.2237116098403931</stageThreshold>
|
380 |
+
<weakClassifiers>
|
381 |
+
<!-- tree 0 -->
|
382 |
+
<_>
|
383 |
+
<internalNodes>
|
384 |
+
0 -1 114 -24819 1572863935 -16809993 -67108865 2146778388
|
385 |
+
1433927541 -268608444 -34865205</internalNodes>
|
386 |
+
<leafValues>
|
387 |
+
-0.2518476545810700 0.7088654041290283</leafValues></_>
|
388 |
+
<!-- tree 1 -->
|
389 |
+
<_>
|
390 |
+
<internalNodes>
|
391 |
+
0 -1 97 -1841359 -134271049 -32769 -5767369 -1116675 -2185
|
392 |
+
-8231 -33603327</internalNodes>
|
393 |
+
<leafValues>
|
394 |
+
-0.4303432404994965 0.5283288359642029</leafValues></_>
|
395 |
+
<!-- tree 2 -->
|
396 |
+
<_>
|
397 |
+
<internalNodes>
|
398 |
+
0 -1 25 -1359507589 -1360593090 -1073778729 -269553812
|
399 |
+
-809512977 1744707583 -41959433 -134758978</internalNodes>
|
400 |
+
<leafValues>
|
401 |
+
-0.4259553551673889 0.5440809130668640</leafValues></_>
|
402 |
+
<!-- tree 3 -->
|
403 |
+
<_>
|
404 |
+
<internalNodes>
|
405 |
+
0 -1 34 729753407 -134270989 -1140907329 -235200777
|
406 |
+
658456383 2147467263 -1140900929 -16385</internalNodes>
|
407 |
+
<leafValues>
|
408 |
+
-0.5605589151382446 0.4220733344554901</leafValues></_>
|
409 |
+
<!-- tree 4 -->
|
410 |
+
<_>
|
411 |
+
<internalNodes>
|
412 |
+
0 -1 134 -310380553 -420675595 -193005472 -353568129
|
413 |
+
1205338070 -990380036 887604324 -420544526</internalNodes>
|
414 |
+
<leafValues>
|
415 |
+
-0.5192656517028809 0.4399855434894562</leafValues></_>
|
416 |
+
<!-- tree 5 -->
|
417 |
+
<_>
|
418 |
+
<internalNodes>
|
419 |
+
0 -1 16 -1427119361 1978920959 -287119734 -487068946
|
420 |
+
114759245 -540578051 -707510259 -671660453</internalNodes>
|
421 |
+
<leafValues>
|
422 |
+
-0.5013077259063721 0.4570254683494568</leafValues></_>
|
423 |
+
<!-- tree 6 -->
|
424 |
+
<_>
|
425 |
+
<internalNodes>
|
426 |
+
0 -1 74 -738463762 -889949281 -328301948 -121832450
|
427 |
+
-1142658284 -1863576559 2146417353 -263185</internalNodes>
|
428 |
+
<leafValues>
|
429 |
+
-0.4631414115428925 0.4790246188640595</leafValues></_></weakClassifiers></_>
|
430 |
+
<!-- stage 10 -->
|
431 |
+
<_>
|
432 |
+
<maxWeakCount>7</maxWeakCount>
|
433 |
+
<stageThreshold>-0.5544230937957764</stageThreshold>
|
434 |
+
<weakClassifiers>
|
435 |
+
<!-- tree 0 -->
|
436 |
+
<_>
|
437 |
+
<internalNodes>
|
438 |
+
0 -1 113 -76228780 -65538 -1 -67174401 -148007 -33 -221796
|
439 |
+
-272842924</internalNodes>
|
440 |
+
<leafValues>
|
441 |
+
-0.3949716091156006 0.6082032322883606</leafValues></_>
|
442 |
+
<!-- tree 1 -->
|
443 |
+
<_>
|
444 |
+
<internalNodes>
|
445 |
+
0 -1 110 369147696 -1625232112 2138570036 -1189900 790708019
|
446 |
+
-1212613127 799948719 -4456483</internalNodes>
|
447 |
+
<leafValues>
|
448 |
+
-0.4855885505676270 0.4785369932651520</leafValues></_>
|
449 |
+
<!-- tree 2 -->
|
450 |
+
<_>
|
451 |
+
<internalNodes>
|
452 |
+
0 -1 37 784215839 -290015241 536832799 -402984963
|
453 |
+
-1342414991 -838864897 -176769 -268456129</internalNodes>
|
454 |
+
<leafValues>
|
455 |
+
-0.4620285332202911 0.4989669024944305</leafValues></_>
|
456 |
+
<!-- tree 3 -->
|
457 |
+
<_>
|
458 |
+
<internalNodes>
|
459 |
+
0 -1 41 -486418688 -171915327 -340294900 -21938 -519766032
|
460 |
+
-772751172 -73096060 -585322623</internalNodes>
|
461 |
+
<leafValues>
|
462 |
+
-0.6420643329620361 0.3624351918697357</leafValues></_>
|
463 |
+
<!-- tree 4 -->
|
464 |
+
<_>
|
465 |
+
<internalNodes>
|
466 |
+
0 -1 117 -33554953 -475332625 -1423463824 -2077230421
|
467 |
+
-4849669 -2080505925 -219032928 -1071915349</internalNodes>
|
468 |
+
<leafValues>
|
469 |
+
-0.4820112884044647 0.4632140696048737</leafValues></_>
|
470 |
+
<!-- tree 5 -->
|
471 |
+
<_>
|
472 |
+
<internalNodes>
|
473 |
+
0 -1 65 -834130468 -134217476 -1349314083 -1073803559
|
474 |
+
-619913764 -1449131844 -1386890321 -1979118423</internalNodes>
|
475 |
+
<leafValues>
|
476 |
+
-0.4465552568435669 0.5061788558959961</leafValues></_>
|
477 |
+
<!-- tree 6 -->
|
478 |
+
<_>
|
479 |
+
<internalNodes>
|
480 |
+
0 -1 56 -285249779 1912569855 -16530 -1731022870 -1161904146
|
481 |
+
-1342177297 -268439634 -1464078708</internalNodes>
|
482 |
+
<leafValues>
|
483 |
+
-0.5190586447715759 0.4441480338573456</leafValues></_></weakClassifiers></_>
|
484 |
+
<!-- stage 11 -->
|
485 |
+
<_>
|
486 |
+
<maxWeakCount>7</maxWeakCount>
|
487 |
+
<stageThreshold>-0.7161560654640198</stageThreshold>
|
488 |
+
<weakClassifiers>
|
489 |
+
<!-- tree 0 -->
|
490 |
+
<_>
|
491 |
+
<internalNodes>
|
492 |
+
0 -1 20 1246232575 1078001186 -10027057 60102 -277348353
|
493 |
+
-43646987 -1210581153 1195769615</internalNodes>
|
494 |
+
<leafValues>
|
495 |
+
-0.4323809444904327 0.5663768053054810</leafValues></_>
|
496 |
+
<!-- tree 1 -->
|
497 |
+
<_>
|
498 |
+
<internalNodes>
|
499 |
+
0 -1 15 -778583572 -612921106 -578775890 -4036478
|
500 |
+
-1946580497 -1164766570 -1986687009 -12103599</internalNodes>
|
501 |
+
<leafValues>
|
502 |
+
-0.4588732719421387 0.4547033011913300</leafValues></_>
|
503 |
+
<!-- tree 2 -->
|
504 |
+
<_>
|
505 |
+
<internalNodes>
|
506 |
+
0 -1 129 -1073759445 2013231743 -1363169553 -1082459201
|
507 |
+
-1414286549 868185983 -1356133589 -1077936257</internalNodes>
|
508 |
+
<leafValues>
|
509 |
+
-0.5218553543090820 0.4111092388629913</leafValues></_>
|
510 |
+
<!-- tree 3 -->
|
511 |
+
<_>
|
512 |
+
<internalNodes>
|
513 |
+
0 -1 102 -84148365 -2093417722 -1204850272 564290299
|
514 |
+
-67121221 -1342177350 -1309195902 -776734797</internalNodes>
|
515 |
+
<leafValues>
|
516 |
+
-0.4920000731945038 0.4326725304126740</leafValues></_>
|
517 |
+
<!-- tree 4 -->
|
518 |
+
<_>
|
519 |
+
<internalNodes>
|
520 |
+
0 -1 88 -25694458 67104495 -290216278 -168563037 2083877442
|
521 |
+
1702788383 -144191964 -234882162</internalNodes>
|
522 |
+
<leafValues>
|
523 |
+
-0.4494568109512329 0.4448510706424713</leafValues></_>
|
524 |
+
<!-- tree 5 -->
|
525 |
+
<_>
|
526 |
+
<internalNodes>
|
527 |
+
0 -1 59 -857980836 904682741 -1612267521 232279415
|
528 |
+
1550862252 -574825221 -357380888 -4579409</internalNodes>
|
529 |
+
<leafValues>
|
530 |
+
-0.5180826783180237 0.3888972699642181</leafValues></_>
|
531 |
+
<!-- tree 6 -->
|
532 |
+
<_>
|
533 |
+
<internalNodes>
|
534 |
+
0 -1 27 -98549440 -137838400 494928389 -246013630 939541351
|
535 |
+
-1196072350 -620603549 2137216273</internalNodes>
|
536 |
+
<leafValues>
|
537 |
+
-0.6081240773200989 0.3333222270011902</leafValues></_></weakClassifiers></_>
|
538 |
+
<!-- stage 12 -->
|
539 |
+
<_>
|
540 |
+
<maxWeakCount>8</maxWeakCount>
|
541 |
+
<stageThreshold>-0.6743940711021423</stageThreshold>
|
542 |
+
<weakClassifiers>
|
543 |
+
<!-- tree 0 -->
|
544 |
+
<_>
|
545 |
+
<internalNodes>
|
546 |
+
0 -1 29 -150995201 2071191945 -1302151626 536934335
|
547 |
+
-1059008937 914128709 1147328110 -268369925</internalNodes>
|
548 |
+
<leafValues>
|
549 |
+
-0.1790193915367127 0.6605972051620483</leafValues></_>
|
550 |
+
<!-- tree 1 -->
|
551 |
+
<_>
|
552 |
+
<internalNodes>
|
553 |
+
0 -1 128 -134509479 1610575703 -1342177289 1861484541
|
554 |
+
-1107833788 1577058173 -333558568 -136319041</internalNodes>
|
555 |
+
<leafValues>
|
556 |
+
-0.3681024610996246 0.5139749646186829</leafValues></_>
|
557 |
+
<!-- tree 2 -->
|
558 |
+
<_>
|
559 |
+
<internalNodes>
|
560 |
+
0 -1 70 -1 1060154476 -1090984524 -630918524 -539492875
|
561 |
+
779616255 -839568424 -321</internalNodes>
|
562 |
+
<leafValues>
|
563 |
+
-0.3217232525348663 0.6171553134918213</leafValues></_>
|
564 |
+
<!-- tree 3 -->
|
565 |
+
<_>
|
566 |
+
<internalNodes>
|
567 |
+
0 -1 4 -269562385 -285029906 -791084350 -17923776 235286671
|
568 |
+
1275504943 1344390399 -966276889</internalNodes>
|
569 |
+
<leafValues>
|
570 |
+
-0.4373284578323364 0.4358185231685638</leafValues></_>
|
571 |
+
<!-- tree 4 -->
|
572 |
+
<_>
|
573 |
+
<internalNodes>
|
574 |
+
0 -1 76 17825984 -747628419 595427229 1474759671 575672208
|
575 |
+
-1684005538 872217086 -1155858277</internalNodes>
|
576 |
+
<leafValues>
|
577 |
+
-0.4404836893081665 0.4601220190525055</leafValues></_>
|
578 |
+
<!-- tree 5 -->
|
579 |
+
<_>
|
580 |
+
<internalNodes>
|
581 |
+
0 -1 124 -336593039 1873735591 -822231622 -355795238
|
582 |
+
-470820869 -1997537409 -1057132384 -1015285005</internalNodes>
|
583 |
+
<leafValues>
|
584 |
+
-0.4294152259826660 0.4452161788940430</leafValues></_>
|
585 |
+
<!-- tree 6 -->
|
586 |
+
<_>
|
587 |
+
<internalNodes>
|
588 |
+
0 -1 54 -834212130 -593694721 -322142257 -364892500
|
589 |
+
-951029539 -302125121 -1615106053 -79249765</internalNodes>
|
590 |
+
<leafValues>
|
591 |
+
-0.3973052501678467 0.4854526817798615</leafValues></_>
|
592 |
+
<!-- tree 7 -->
|
593 |
+
<_>
|
594 |
+
<internalNodes>
|
595 |
+
0 -1 95 1342144479 2147431935 -33554561 -47873 -855685912 -1
|
596 |
+
1988052447 536827383</internalNodes>
|
597 |
+
<leafValues>
|
598 |
+
-0.7054683566093445 0.2697997391223908</leafValues></_></weakClassifiers></_>
|
599 |
+
<!-- stage 13 -->
|
600 |
+
<_>
|
601 |
+
<maxWeakCount>9</maxWeakCount>
|
602 |
+
<stageThreshold>-1.2042298316955566</stageThreshold>
|
603 |
+
<weakClassifiers>
|
604 |
+
<!-- tree 0 -->
|
605 |
+
<_>
|
606 |
+
<internalNodes>
|
607 |
+
0 -1 39 1431368960 -183437936 -537002499 -137497097
|
608 |
+
1560590321 -84611081 -2097193 -513</internalNodes>
|
609 |
+
<leafValues>
|
610 |
+
-0.5905947685241699 0.5101932883262634</leafValues></_>
|
611 |
+
<!-- tree 1 -->
|
612 |
+
<_>
|
613 |
+
<internalNodes>
|
614 |
+
0 -1 120 -1645259691 2105491231 2130706431 1458995007
|
615 |
+
-8567536 -42483883 -33780003 -21004417</internalNodes>
|
616 |
+
<leafValues>
|
617 |
+
-0.4449204802513123 0.4490709304809570</leafValues></_>
|
618 |
+
<!-- tree 2 -->
|
619 |
+
<_>
|
620 |
+
<internalNodes>
|
621 |
+
0 -1 89 -612381022 -505806938 -362027516 -452985106
|
622 |
+
275854917 1920431639 -12600561 -134221825</internalNodes>
|
623 |
+
<leafValues>
|
624 |
+
-0.4693818688392639 0.4061094820499420</leafValues></_>
|
625 |
+
<!-- tree 3 -->
|
626 |
+
<_>
|
627 |
+
<internalNodes>
|
628 |
+
0 -1 14 -805573153 -161 -554172679 -530519488 -16779441
|
629 |
+
2000682871 -33604275 -150997129</internalNodes>
|
630 |
+
<leafValues>
|
631 |
+
-0.3600351214408875 0.5056326985359192</leafValues></_>
|
632 |
+
<!-- tree 4 -->
|
633 |
+
<_>
|
634 |
+
<internalNodes>
|
635 |
+
0 -1 67 6192 435166195 1467449341 2046691505 -1608493775
|
636 |
+
-4755729 -1083162625 -71365637</internalNodes>
|
637 |
+
<leafValues>
|
638 |
+
-0.4459891915321350 0.4132415652275085</leafValues></_>
|
639 |
+
<!-- tree 5 -->
|
640 |
+
<_>
|
641 |
+
<internalNodes>
|
642 |
+
0 -1 86 -41689215 -3281034 1853357967 -420712635 -415924289
|
643 |
+
-270209208 -1088293113 -825311232</internalNodes>
|
644 |
+
<leafValues>
|
645 |
+
-0.4466069042682648 0.4135067760944367</leafValues></_>
|
646 |
+
<!-- tree 6 -->
|
647 |
+
<_>
|
648 |
+
<internalNodes>
|
649 |
+
0 -1 80 -117391116 -42203396 2080374461 -188709 -542008165
|
650 |
+
-356831940 -1091125345 -1073796897</internalNodes>
|
651 |
+
<leafValues>
|
652 |
+
-0.3394956290721893 0.5658645033836365</leafValues></_>
|
653 |
+
<!-- tree 7 -->
|
654 |
+
<_>
|
655 |
+
<internalNodes>
|
656 |
+
0 -1 75 -276830049 1378714472 -1342181951 757272098
|
657 |
+
1073740607 -282199241 -415761549 170896931</internalNodes>
|
658 |
+
<leafValues>
|
659 |
+
-0.5346512198448181 0.3584479391574860</leafValues></_>
|
660 |
+
<!-- tree 8 -->
|
661 |
+
<_>
|
662 |
+
<internalNodes>
|
663 |
+
0 -1 55 -796075825 -123166849 2113667055 -217530421
|
664 |
+
-1107432194 -16385 -806359809 -391188771</internalNodes>
|
665 |
+
<leafValues>
|
666 |
+
-0.4379335641860962 0.4123645126819611</leafValues></_></weakClassifiers></_>
|
667 |
+
<!-- stage 14 -->
|
668 |
+
<_>
|
669 |
+
<maxWeakCount>10</maxWeakCount>
|
670 |
+
<stageThreshold>-0.8402050137519836</stageThreshold>
|
671 |
+
<weakClassifiers>
|
672 |
+
<!-- tree 0 -->
|
673 |
+
<_>
|
674 |
+
<internalNodes>
|
675 |
+
0 -1 71 -890246622 15525883 -487690486 47116238 -1212319899
|
676 |
+
-1291847681 -68159890 -469829921</internalNodes>
|
677 |
+
<leafValues>
|
678 |
+
-0.2670986354351044 0.6014143228530884</leafValues></_>
|
679 |
+
<!-- tree 1 -->
|
680 |
+
<_>
|
681 |
+
<internalNodes>
|
682 |
+
0 -1 31 -1361180685 -1898008841 -1090588811 -285410071
|
683 |
+
-1074016265 -840443905 2147221487 -262145</internalNodes>
|
684 |
+
<leafValues>
|
685 |
+
-0.4149844348430634 0.4670888185501099</leafValues></_>
|
686 |
+
<!-- tree 2 -->
|
687 |
+
<_>
|
688 |
+
<internalNodes>
|
689 |
+
0 -1 40 1426190596 1899364271 2142731795 -142607505
|
690 |
+
-508232452 -21563393 -41960001 -65</internalNodes>
|
691 |
+
<leafValues>
|
692 |
+
-0.4985891580581665 0.3719584941864014</leafValues></_>
|
693 |
+
<!-- tree 3 -->
|
694 |
+
<_>
|
695 |
+
<internalNodes>
|
696 |
+
0 -1 109 -201337965 10543906 -236498096 -746195597
|
697 |
+
1974565825 -15204415 921907633 -190058309</internalNodes>
|
698 |
+
<leafValues>
|
699 |
+
-0.4568729996681213 0.3965812027454376</leafValues></_>
|
700 |
+
<!-- tree 4 -->
|
701 |
+
<_>
|
702 |
+
<internalNodes>
|
703 |
+
0 -1 130 -595026732 -656401928 -268649235 -571490699
|
704 |
+
-440600392 -133131 -358810952 -2004088646</internalNodes>
|
705 |
+
<leafValues>
|
706 |
+
-0.4770836830139160 0.3862601518630981</leafValues></_>
|
707 |
+
<!-- tree 5 -->
|
708 |
+
<_>
|
709 |
+
<internalNodes>
|
710 |
+
0 -1 66 941674740 -1107882114 1332789109 -67691015
|
711 |
+
-1360463693 -1556612430 -609108546 733546933</internalNodes>
|
712 |
+
<leafValues>
|
713 |
+
-0.4877715110778809 0.3778986334800720</leafValues></_>
|
714 |
+
<!-- tree 6 -->
|
715 |
+
<_>
|
716 |
+
<internalNodes>
|
717 |
+
0 -1 49 -17114945 -240061474 1552871558 -82775604 -932393844
|
718 |
+
-1308544889 -532635478 -99042357</internalNodes>
|
719 |
+
<leafValues>
|
720 |
+
-0.3721654713153839 0.4994400143623352</leafValues></_>
|
721 |
+
<!-- tree 7 -->
|
722 |
+
<_>
|
723 |
+
<internalNodes>
|
724 |
+
0 -1 133 -655906006 1405502603 -939205164 1884929228
|
725 |
+
-498859222 559417357 -1928559445 -286264385</internalNodes>
|
726 |
+
<leafValues>
|
727 |
+
-0.3934195041656494 0.4769641458988190</leafValues></_>
|
728 |
+
<!-- tree 8 -->
|
729 |
+
<_>
|
730 |
+
<internalNodes>
|
731 |
+
0 -1 0 -335837777 1860677295 -90 -1946186226 931096183
|
732 |
+
251612987 2013265917 -671232197</internalNodes>
|
733 |
+
<leafValues>
|
734 |
+
-0.4323300719261169 0.4342164099216461</leafValues></_>
|
735 |
+
<!-- tree 9 -->
|
736 |
+
<_>
|
737 |
+
<internalNodes>
|
738 |
+
0 -1 103 37769424 -137772680 374692301 2002666345 -536176194
|
739 |
+
-1644484728 807009019 1069089930</internalNodes>
|
740 |
+
<leafValues>
|
741 |
+
-0.4993278682231903 0.3665378093719482</leafValues></_></weakClassifiers></_>
|
742 |
+
<!-- stage 15 -->
|
743 |
+
<_>
|
744 |
+
<maxWeakCount>9</maxWeakCount>
|
745 |
+
<stageThreshold>-1.1974394321441650</stageThreshold>
|
746 |
+
<weakClassifiers>
|
747 |
+
<!-- tree 0 -->
|
748 |
+
<_>
|
749 |
+
<internalNodes>
|
750 |
+
0 -1 43 -5505 2147462911 2143265466 -4511070 -16450 -257
|
751 |
+
-201348440 -71333206</internalNodes>
|
752 |
+
<leafValues>
|
753 |
+
-0.3310225307941437 0.5624626278877258</leafValues></_>
|
754 |
+
<!-- tree 1 -->
|
755 |
+
<_>
|
756 |
+
<internalNodes>
|
757 |
+
0 -1 90 -136842268 -499330741 2015250980 -87107126
|
758 |
+
-641665744 -788524639 -1147864792 -134892563</internalNodes>
|
759 |
+
<leafValues>
|
760 |
+
-0.5266560912132263 0.3704403042793274</leafValues></_>
|
761 |
+
<!-- tree 2 -->
|
762 |
+
<_>
|
763 |
+
<internalNodes>
|
764 |
+
0 -1 104 -146800880 -1780368555 2111170033 -140904684
|
765 |
+
-16777551 -1946681885 -1646463595 -839131947</internalNodes>
|
766 |
+
<leafValues>
|
767 |
+
-0.4171888828277588 0.4540435671806335</leafValues></_>
|
768 |
+
<!-- tree 3 -->
|
769 |
+
<_>
|
770 |
+
<internalNodes>
|
771 |
+
0 -1 85 -832054034 -981663763 -301990281 -578814081
|
772 |
+
-932319000 -1997406723 -33555201 -69206017</internalNodes>
|
773 |
+
<leafValues>
|
774 |
+
-0.4556705355644226 0.3704262077808380</leafValues></_>
|
775 |
+
<!-- tree 4 -->
|
776 |
+
<_>
|
777 |
+
<internalNodes>
|
778 |
+
0 -1 24 -118492417 -1209026825 1119023838 -1334313353
|
779 |
+
1112948738 -297319313 1378887291 -139469193</internalNodes>
|
780 |
+
<leafValues>
|
781 |
+
-0.4182529747486115 0.4267231225967407</leafValues></_>
|
782 |
+
<!-- tree 5 -->
|
783 |
+
<_>
|
784 |
+
<internalNodes>
|
785 |
+
0 -1 78 -1714382628 -2353704 -112094959 -549613092
|
786 |
+
-1567058760 -1718550464 -342315012 -1074972227</internalNodes>
|
787 |
+
<leafValues>
|
788 |
+
-0.3625369668006897 0.4684656262397766</leafValues></_>
|
789 |
+
<!-- tree 6 -->
|
790 |
+
<_>
|
791 |
+
<internalNodes>
|
792 |
+
0 -1 5 -85219702 316836394 -33279 1904970288 2117267315
|
793 |
+
-260901769 -621461759 -88607770</internalNodes>
|
794 |
+
<leafValues>
|
795 |
+
-0.4742925167083740 0.3689507246017456</leafValues></_>
|
796 |
+
<!-- tree 7 -->
|
797 |
+
<_>
|
798 |
+
<internalNodes>
|
799 |
+
0 -1 11 -294654041 -353603585 -1641159686 -50331921
|
800 |
+
-2080899877 1145569279 -143132713 -152044037</internalNodes>
|
801 |
+
<leafValues>
|
802 |
+
-0.3666271567344666 0.4580127298831940</leafValues></_>
|
803 |
+
<!-- tree 8 -->
|
804 |
+
<_>
|
805 |
+
<internalNodes>
|
806 |
+
0 -1 32 1887453658 -638545712 -1877976819 -34320972
|
807 |
+
-1071067983 -661345416 -583338277 1060190561</internalNodes>
|
808 |
+
<leafValues>
|
809 |
+
-0.4567637443542481 0.3894708156585693</leafValues></_></weakClassifiers></_>
|
810 |
+
<!-- stage 16 -->
|
811 |
+
<_>
|
812 |
+
<maxWeakCount>9</maxWeakCount>
|
813 |
+
<stageThreshold>-0.5733128190040588</stageThreshold>
|
814 |
+
<weakClassifiers>
|
815 |
+
<!-- tree 0 -->
|
816 |
+
<_>
|
817 |
+
<internalNodes>
|
818 |
+
0 -1 122 -994063296 1088745462 -318837116 -319881377
|
819 |
+
1102566613 1165490103 -121679694 -134744129</internalNodes>
|
820 |
+
<leafValues>
|
821 |
+
-0.4055117964744568 0.5487945079803467</leafValues></_>
|
822 |
+
<!-- tree 1 -->
|
823 |
+
<_>
|
824 |
+
<internalNodes>
|
825 |
+
0 -1 68 -285233233 -538992907 1811935199 -369234005 -529
|
826 |
+
-20593 -20505 -1561401854</internalNodes>
|
827 |
+
<leafValues>
|
828 |
+
-0.3787897229194641 0.4532003402709961</leafValues></_>
|
829 |
+
<!-- tree 2 -->
|
830 |
+
<_>
|
831 |
+
<internalNodes>
|
832 |
+
0 -1 58 -1335245632 1968917183 1940861695 536816369
|
833 |
+
-1226071367 -570908176 457026619 1000020667</internalNodes>
|
834 |
+
<leafValues>
|
835 |
+
-0.4258328974246979 0.4202791750431061</leafValues></_>
|
836 |
+
<!-- tree 3 -->
|
837 |
+
<_>
|
838 |
+
<internalNodes>
|
839 |
+
0 -1 94 -1360318719 -1979797897 -50435249 -18646473
|
840 |
+
-608879292 -805306691 -269304244 -17840167</internalNodes>
|
841 |
+
<leafValues>
|
842 |
+
-0.4561023116111755 0.4002747833728790</leafValues></_>
|
843 |
+
<!-- tree 4 -->
|
844 |
+
<_>
|
845 |
+
<internalNodes>
|
846 |
+
0 -1 87 2062765935 -16449 -1275080721 -16406 45764335
|
847 |
+
-1090552065 -772846337 -570464322</internalNodes>
|
848 |
+
<leafValues>
|
849 |
+
-0.4314672648906708 0.4086346626281738</leafValues></_>
|
850 |
+
<!-- tree 5 -->
|
851 |
+
<_>
|
852 |
+
<internalNodes>
|
853 |
+
0 -1 127 -536896021 1080817663 -738234288 -965478709
|
854 |
+
-2082767969 1290855887 1993822934 -990381609</internalNodes>
|
855 |
+
<leafValues>
|
856 |
+
-0.4174543321132660 0.4249868988990784</leafValues></_>
|
857 |
+
<!-- tree 6 -->
|
858 |
+
<_>
|
859 |
+
<internalNodes>
|
860 |
+
0 -1 3 -818943025 168730891 -293610428 -79249354 669224671
|
861 |
+
621166734 1086506807 1473768907</internalNodes>
|
862 |
+
<leafValues>
|
863 |
+
-0.4321364760398865 0.4090838730335236</leafValues></_>
|
864 |
+
<!-- tree 7 -->
|
865 |
+
<_>
|
866 |
+
<internalNodes>
|
867 |
+
0 -1 79 -68895696 -67107736 -1414315879 -841676168
|
868 |
+
-619843344 -1180610531 -1081990469 1043203389</internalNodes>
|
869 |
+
<leafValues>
|
870 |
+
-0.5018386244773865 0.3702533841133118</leafValues></_>
|
871 |
+
<!-- tree 8 -->
|
872 |
+
<_>
|
873 |
+
<internalNodes>
|
874 |
+
0 -1 116 -54002134 -543485719 -2124882422 -1437445858
|
875 |
+
-115617074 -1195787391 -1096024366 -2140472445</internalNodes>
|
876 |
+
<leafValues>
|
877 |
+
-0.5037505626678467 0.3564981222152710</leafValues></_></weakClassifiers></_>
|
878 |
+
<!-- stage 17 -->
|
879 |
+
<_>
|
880 |
+
<maxWeakCount>9</maxWeakCount>
|
881 |
+
<stageThreshold>-0.4892596900463104</stageThreshold>
|
882 |
+
<weakClassifiers>
|
883 |
+
<!-- tree 0 -->
|
884 |
+
<_>
|
885 |
+
<internalNodes>
|
886 |
+
0 -1 132 -67113211 2003808111 1862135111 846461923 -2752
|
887 |
+
2002237273 -273154752 1937223539</internalNodes>
|
888 |
+
<leafValues>
|
889 |
+
-0.2448196411132813 0.5689709186553955</leafValues></_>
|
890 |
+
<!-- tree 1 -->
|
891 |
+
<_>
|
892 |
+
<internalNodes>
|
893 |
+
0 -1 62 1179423888 -78064940 -611839555 -539167899
|
894 |
+
-1289358360 -1650810108 -892540499 -1432827684</internalNodes>
|
895 |
+
<leafValues>
|
896 |
+
-0.4633283913135529 0.3587929606437683</leafValues></_>
|
897 |
+
<!-- tree 2 -->
|
898 |
+
<_>
|
899 |
+
<internalNodes>
|
900 |
+
0 -1 23 -285212705 -78450761 -656212031 -264050110 -27787425
|
901 |
+
-1334349961 -547662981 -135796924</internalNodes>
|
902 |
+
<leafValues>
|
903 |
+
-0.3731099069118500 0.4290455579757690</leafValues></_>
|
904 |
+
<!-- tree 3 -->
|
905 |
+
<_>
|
906 |
+
<internalNodes>
|
907 |
+
0 -1 77 341863476 403702016 -550588417 1600194541
|
908 |
+
-1080690735 951127993 -1388580949 -1153717473</internalNodes>
|
909 |
+
<leafValues>
|
910 |
+
-0.3658909499645233 0.4556473195552826</leafValues></_>
|
911 |
+
<!-- tree 4 -->
|
912 |
+
<_>
|
913 |
+
<internalNodes>
|
914 |
+
0 -1 22 -586880702 -204831512 -100644596 -39319550
|
915 |
+
-1191150794 705692513 457203315 -75806957</internalNodes>
|
916 |
+
<leafValues>
|
917 |
+
-0.5214384198188782 0.3221037387847900</leafValues></_>
|
918 |
+
<!-- tree 5 -->
|
919 |
+
<_>
|
920 |
+
<internalNodes>
|
921 |
+
0 -1 72 -416546870 545911370 -673716192 -775559454
|
922 |
+
-264113598 139424 -183369982 -204474641</internalNodes>
|
923 |
+
<leafValues>
|
924 |
+
-0.4289036989212036 0.4004956185817719</leafValues></_>
|
925 |
+
<!-- tree 6 -->
|
926 |
+
<_>
|
927 |
+
<internalNodes>
|
928 |
+
0 -1 50 -1026505020 -589692154 -1740499937 -1563770497
|
929 |
+
1348491006 -60710713 -1109853489 -633909413</internalNodes>
|
930 |
+
<leafValues>
|
931 |
+
-0.4621542394161224 0.3832748532295227</leafValues></_>
|
932 |
+
<!-- tree 7 -->
|
933 |
+
<_>
|
934 |
+
<internalNodes>
|
935 |
+
0 -1 108 -1448872304 -477895040 -1778390608 -772418127
|
936 |
+
-1789923416 -1612057181 -805306693 -1415842113</internalNodes>
|
937 |
+
<leafValues>
|
938 |
+
-0.3711548447608948 0.4612701535224915</leafValues></_>
|
939 |
+
<!-- tree 8 -->
|
940 |
+
<_>
|
941 |
+
<internalNodes>
|
942 |
+
0 -1 92 407905424 -582449988 52654751 -1294472 -285103725
|
943 |
+
-74633006 1871559083 1057955850</internalNodes>
|
944 |
+
<leafValues>
|
945 |
+
-0.5180652141571045 0.3205870389938355</leafValues></_></weakClassifiers></_>
|
946 |
+
<!-- stage 18 -->
|
947 |
+
<_>
|
948 |
+
<maxWeakCount>10</maxWeakCount>
|
949 |
+
<stageThreshold>-0.5911940932273865</stageThreshold>
|
950 |
+
<weakClassifiers>
|
951 |
+
<!-- tree 0 -->
|
952 |
+
<_>
|
953 |
+
<internalNodes>
|
954 |
+
0 -1 81 4112 -1259563825 -846671428 -100902460 1838164148
|
955 |
+
-74153752 -90653988 -1074263896</internalNodes>
|
956 |
+
<leafValues>
|
957 |
+
-0.2592592537403107 0.5873016119003296</leafValues></_>
|
958 |
+
<!-- tree 1 -->
|
959 |
+
<_>
|
960 |
+
<internalNodes>
|
961 |
+
0 -1 1 -285216785 -823206977 -1085589 -1081346 1207959293
|
962 |
+
1157103471 2097133565 -2097169</internalNodes>
|
963 |
+
<leafValues>
|
964 |
+
-0.3801195919513702 0.4718827307224274</leafValues></_>
|
965 |
+
<!-- tree 2 -->
|
966 |
+
<_>
|
967 |
+
<internalNodes>
|
968 |
+
0 -1 121 -12465 -536875169 2147478367 2130706303 -37765492
|
969 |
+
-866124467 -318782328 -1392509185</internalNodes>
|
970 |
+
<leafValues>
|
971 |
+
-0.3509117066860199 0.5094807147979736</leafValues></_>
|
972 |
+
<!-- tree 3 -->
|
973 |
+
<_>
|
974 |
+
<internalNodes>
|
975 |
+
0 -1 38 2147449663 -20741 -16794757 1945873146 -16710 -1
|
976 |
+
-8406341 -67663041</internalNodes>
|
977 |
+
<leafValues>
|
978 |
+
-0.4068757295608521 0.4130136370658875</leafValues></_>
|
979 |
+
<!-- tree 4 -->
|
980 |
+
<_>
|
981 |
+
<internalNodes>
|
982 |
+
0 -1 17 -155191713 866117231 1651407483 548272812 -479201468
|
983 |
+
-447742449 1354229504 -261884429</internalNodes>
|
984 |
+
<leafValues>
|
985 |
+
-0.4557141065597534 0.3539792001247406</leafValues></_>
|
986 |
+
<!-- tree 5 -->
|
987 |
+
<_>
|
988 |
+
<internalNodes>
|
989 |
+
0 -1 100 -225319378 -251682065 -492783986 -792341777
|
990 |
+
-1287261695 1393643841 -11274182 -213909521</internalNodes>
|
991 |
+
<leafValues>
|
992 |
+
-0.4117803275585175 0.4118592441082001</leafValues></_>
|
993 |
+
<!-- tree 6 -->
|
994 |
+
<_>
|
995 |
+
<internalNodes>
|
996 |
+
0 -1 63 -382220122 -2002072729 -51404800 -371201558
|
997 |
+
-923011069 -2135301457 -2066104743 -1042557441</internalNodes>
|
998 |
+
<leafValues>
|
999 |
+
-0.4008397758007050 0.4034757018089294</leafValues></_>
|
1000 |
+
<!-- tree 7 -->
|
1001 |
+
<_>
|
1002 |
+
<internalNodes>
|
1003 |
+
0 -1 101 -627353764 -48295149 1581203952 -436258614
|
1004 |
+
-105268268 -1435893445 -638126888 -1061107126</internalNodes>
|
1005 |
+
<leafValues>
|
1006 |
+
-0.5694189667701721 0.2964762747287750</leafValues></_>
|
1007 |
+
<!-- tree 8 -->
|
1008 |
+
<_>
|
1009 |
+
<internalNodes>
|
1010 |
+
0 -1 118 -8399181 1058107691 -621022752 -251003468 -12582915
|
1011 |
+
-574619739 -994397789 -1648362021</internalNodes>
|
1012 |
+
<leafValues>
|
1013 |
+
-0.3195341229438782 0.5294018983840942</leafValues></_>
|
1014 |
+
<!-- tree 9 -->
|
1015 |
+
<_>
|
1016 |
+
<internalNodes>
|
1017 |
+
0 -1 92 -348343812 -1078389516 1717960437 364735981
|
1018 |
+
-1783841602 -4883137 -457572354 -1076950384</internalNodes>
|
1019 |
+
<leafValues>
|
1020 |
+
-0.3365339040756226 0.5067458748817444</leafValues></_></weakClassifiers></_>
|
1021 |
+
<!-- stage 19 -->
|
1022 |
+
<_>
|
1023 |
+
<maxWeakCount>10</maxWeakCount>
|
1024 |
+
<stageThreshold>-0.7612916231155396</stageThreshold>
|
1025 |
+
<weakClassifiers>
|
1026 |
+
<!-- tree 0 -->
|
1027 |
+
<_>
|
1028 |
+
<internalNodes>
|
1029 |
+
0 -1 10 -1976661318 -287957604 -1659497122 -782068 43591089
|
1030 |
+
-453637880 1435470000 -1077438561</internalNodes>
|
1031 |
+
<leafValues>
|
1032 |
+
-0.4204545319080353 0.5165745615959168</leafValues></_>
|
1033 |
+
<!-- tree 1 -->
|
1034 |
+
<_>
|
1035 |
+
<internalNodes>
|
1036 |
+
0 -1 131 -67110925 14874979 -142633168 -1338923040
|
1037 |
+
2046713291 -2067933195 1473503712 -789579837</internalNodes>
|
1038 |
+
<leafValues>
|
1039 |
+
-0.3762553930282593 0.4075302779674530</leafValues></_>
|
1040 |
+
<!-- tree 2 -->
|
1041 |
+
<_>
|
1042 |
+
<internalNodes>
|
1043 |
+
0 -1 83 -272814301 -1577073 -1118685 -305156120 -1052289
|
1044 |
+
-1073813756 -538971154 -355523038</internalNodes>
|
1045 |
+
<leafValues>
|
1046 |
+
-0.4253497421741486 0.3728055357933044</leafValues></_>
|
1047 |
+
<!-- tree 3 -->
|
1048 |
+
<_>
|
1049 |
+
<internalNodes>
|
1050 |
+
0 -1 135 -2233 -214486242 -538514758 573747007 -159390971
|
1051 |
+
1994225489 -973738098 -203424005</internalNodes>
|
1052 |
+
<leafValues>
|
1053 |
+
-0.3601998090744019 0.4563256204128265</leafValues></_>
|
1054 |
+
<!-- tree 4 -->
|
1055 |
+
<_>
|
1056 |
+
<internalNodes>
|
1057 |
+
0 -1 115 -261031688 -1330369299 -641860609 1029570301
|
1058 |
+
-1306461192 -1196149518 -1529767778 683139823</internalNodes>
|
1059 |
+
<leafValues>
|
1060 |
+
-0.4034293889999390 0.4160816967487335</leafValues></_>
|
1061 |
+
<!-- tree 5 -->
|
1062 |
+
<_>
|
1063 |
+
<internalNodes>
|
1064 |
+
0 -1 64 -572993608 -34042628 -417865 -111109 -1433365268
|
1065 |
+
-19869715 -1920939864 -1279457063</internalNodes>
|
1066 |
+
<leafValues>
|
1067 |
+
-0.3620899617671967 0.4594142735004425</leafValues></_>
|
1068 |
+
<!-- tree 6 -->
|
1069 |
+
<_>
|
1070 |
+
<internalNodes>
|
1071 |
+
0 -1 36 -626275097 -615256993 1651946018 805366393
|
1072 |
+
2016559730 -430780849 -799868165 -16580645</internalNodes>
|
1073 |
+
<leafValues>
|
1074 |
+
-0.3903816640377045 0.4381459355354309</leafValues></_>
|
1075 |
+
<!-- tree 7 -->
|
1076 |
+
<_>
|
1077 |
+
<internalNodes>
|
1078 |
+
0 -1 93 1354797300 -1090957603 1976418270 -1342502178
|
1079 |
+
-1851873892 -1194637077 -1153521668 -1108399474</internalNodes>
|
1080 |
+
<leafValues>
|
1081 |
+
-0.3591445386409760 0.4624078869819641</leafValues></_>
|
1082 |
+
<!-- tree 8 -->
|
1083 |
+
<_>
|
1084 |
+
<internalNodes>
|
1085 |
+
0 -1 91 68157712 1211368313 -304759523 1063017136 798797750
|
1086 |
+
-275513546 648167355 -1145357350</internalNodes>
|
1087 |
+
<leafValues>
|
1088 |
+
-0.4297670423984528 0.4023293554782867</leafValues></_>
|
1089 |
+
<!-- tree 9 -->
|
1090 |
+
<_>
|
1091 |
+
<internalNodes>
|
1092 |
+
0 -1 107 -546318240 -1628569602 -163577944 -537002306
|
1093 |
+
-545456389 -1325465645 -380446736 -1058473386</internalNodes>
|
1094 |
+
<leafValues>
|
1095 |
+
-0.5727006793022156 0.2995934784412384</leafValues></_></weakClassifiers></_></stages>
|
1096 |
+
<features>
|
1097 |
+
<_>
|
1098 |
+
<rect>
|
1099 |
+
0 0 3 5</rect></_>
|
1100 |
+
<_>
|
1101 |
+
<rect>
|
1102 |
+
0 0 4 2</rect></_>
|
1103 |
+
<_>
|
1104 |
+
<rect>
|
1105 |
+
0 0 6 3</rect></_>
|
1106 |
+
<_>
|
1107 |
+
<rect>
|
1108 |
+
0 1 2 3</rect></_>
|
1109 |
+
<_>
|
1110 |
+
<rect>
|
1111 |
+
0 1 3 3</rect></_>
|
1112 |
+
<_>
|
1113 |
+
<rect>
|
1114 |
+
0 1 3 7</rect></_>
|
1115 |
+
<_>
|
1116 |
+
<rect>
|
1117 |
+
0 4 3 3</rect></_>
|
1118 |
+
<_>
|
1119 |
+
<rect>
|
1120 |
+
0 11 3 4</rect></_>
|
1121 |
+
<_>
|
1122 |
+
<rect>
|
1123 |
+
0 12 8 4</rect></_>
|
1124 |
+
<_>
|
1125 |
+
<rect>
|
1126 |
+
0 14 4 3</rect></_>
|
1127 |
+
<_>
|
1128 |
+
<rect>
|
1129 |
+
1 0 5 3</rect></_>
|
1130 |
+
<_>
|
1131 |
+
<rect>
|
1132 |
+
1 1 2 2</rect></_>
|
1133 |
+
<_>
|
1134 |
+
<rect>
|
1135 |
+
1 3 3 1</rect></_>
|
1136 |
+
<_>
|
1137 |
+
<rect>
|
1138 |
+
1 7 4 4</rect></_>
|
1139 |
+
<_>
|
1140 |
+
<rect>
|
1141 |
+
1 12 2 2</rect></_>
|
1142 |
+
<_>
|
1143 |
+
<rect>
|
1144 |
+
1 13 4 1</rect></_>
|
1145 |
+
<_>
|
1146 |
+
<rect>
|
1147 |
+
1 14 4 3</rect></_>
|
1148 |
+
<_>
|
1149 |
+
<rect>
|
1150 |
+
1 17 3 2</rect></_>
|
1151 |
+
<_>
|
1152 |
+
<rect>
|
1153 |
+
2 0 2 3</rect></_>
|
1154 |
+
<_>
|
1155 |
+
<rect>
|
1156 |
+
2 1 2 2</rect></_>
|
1157 |
+
<_>
|
1158 |
+
<rect>
|
1159 |
+
2 2 4 6</rect></_>
|
1160 |
+
<_>
|
1161 |
+
<rect>
|
1162 |
+
2 3 4 4</rect></_>
|
1163 |
+
<_>
|
1164 |
+
<rect>
|
1165 |
+
2 7 2 1</rect></_>
|
1166 |
+
<_>
|
1167 |
+
<rect>
|
1168 |
+
2 11 2 3</rect></_>
|
1169 |
+
<_>
|
1170 |
+
<rect>
|
1171 |
+
2 17 3 2</rect></_>
|
1172 |
+
<_>
|
1173 |
+
<rect>
|
1174 |
+
3 0 2 2</rect></_>
|
1175 |
+
<_>
|
1176 |
+
<rect>
|
1177 |
+
3 1 7 3</rect></_>
|
1178 |
+
<_>
|
1179 |
+
<rect>
|
1180 |
+
3 7 2 1</rect></_>
|
1181 |
+
<_>
|
1182 |
+
<rect>
|
1183 |
+
3 7 2 4</rect></_>
|
1184 |
+
<_>
|
1185 |
+
<rect>
|
1186 |
+
3 18 2 2</rect></_>
|
1187 |
+
<_>
|
1188 |
+
<rect>
|
1189 |
+
4 0 2 3</rect></_>
|
1190 |
+
<_>
|
1191 |
+
<rect>
|
1192 |
+
4 3 2 1</rect></_>
|
1193 |
+
<_>
|
1194 |
+
<rect>
|
1195 |
+
4 6 2 1</rect></_>
|
1196 |
+
<_>
|
1197 |
+
<rect>
|
1198 |
+
4 6 2 5</rect></_>
|
1199 |
+
<_>
|
1200 |
+
<rect>
|
1201 |
+
4 7 5 2</rect></_>
|
1202 |
+
<_>
|
1203 |
+
<rect>
|
1204 |
+
4 8 4 3</rect></_>
|
1205 |
+
<_>
|
1206 |
+
<rect>
|
1207 |
+
4 18 2 2</rect></_>
|
1208 |
+
<_>
|
1209 |
+
<rect>
|
1210 |
+
5 0 2 2</rect></_>
|
1211 |
+
<_>
|
1212 |
+
<rect>
|
1213 |
+
5 3 4 4</rect></_>
|
1214 |
+
<_>
|
1215 |
+
<rect>
|
1216 |
+
5 6 2 5</rect></_>
|
1217 |
+
<_>
|
1218 |
+
<rect>
|
1219 |
+
5 9 2 2</rect></_>
|
1220 |
+
<_>
|
1221 |
+
<rect>
|
1222 |
+
5 10 2 2</rect></_>
|
1223 |
+
<_>
|
1224 |
+
<rect>
|
1225 |
+
6 3 4 4</rect></_>
|
1226 |
+
<_>
|
1227 |
+
<rect>
|
1228 |
+
6 4 4 3</rect></_>
|
1229 |
+
<_>
|
1230 |
+
<rect>
|
1231 |
+
6 5 2 3</rect></_>
|
1232 |
+
<_>
|
1233 |
+
<rect>
|
1234 |
+
6 5 2 5</rect></_>
|
1235 |
+
<_>
|
1236 |
+
<rect>
|
1237 |
+
6 5 4 3</rect></_>
|
1238 |
+
<_>
|
1239 |
+
<rect>
|
1240 |
+
6 6 4 2</rect></_>
|
1241 |
+
<_>
|
1242 |
+
<rect>
|
1243 |
+
6 6 4 4</rect></_>
|
1244 |
+
<_>
|
1245 |
+
<rect>
|
1246 |
+
6 18 1 2</rect></_>
|
1247 |
+
<_>
|
1248 |
+
<rect>
|
1249 |
+
6 21 2 1</rect></_>
|
1250 |
+
<_>
|
1251 |
+
<rect>
|
1252 |
+
7 0 3 7</rect></_>
|
1253 |
+
<_>
|
1254 |
+
<rect>
|
1255 |
+
7 4 2 3</rect></_>
|
1256 |
+
<_>
|
1257 |
+
<rect>
|
1258 |
+
7 9 5 1</rect></_>
|
1259 |
+
<_>
|
1260 |
+
<rect>
|
1261 |
+
7 21 2 1</rect></_>
|
1262 |
+
<_>
|
1263 |
+
<rect>
|
1264 |
+
8 0 1 4</rect></_>
|
1265 |
+
<_>
|
1266 |
+
<rect>
|
1267 |
+
8 5 2 2</rect></_>
|
1268 |
+
<_>
|
1269 |
+
<rect>
|
1270 |
+
8 5 3 2</rect></_>
|
1271 |
+
<_>
|
1272 |
+
<rect>
|
1273 |
+
8 17 3 1</rect></_>
|
1274 |
+
<_>
|
1275 |
+
<rect>
|
1276 |
+
8 18 1 2</rect></_>
|
1277 |
+
<_>
|
1278 |
+
<rect>
|
1279 |
+
9 0 5 3</rect></_>
|
1280 |
+
<_>
|
1281 |
+
<rect>
|
1282 |
+
9 2 2 6</rect></_>
|
1283 |
+
<_>
|
1284 |
+
<rect>
|
1285 |
+
9 5 1 1</rect></_>
|
1286 |
+
<_>
|
1287 |
+
<rect>
|
1288 |
+
9 11 1 1</rect></_>
|
1289 |
+
<_>
|
1290 |
+
<rect>
|
1291 |
+
9 16 1 1</rect></_>
|
1292 |
+
<_>
|
1293 |
+
<rect>
|
1294 |
+
9 16 2 1</rect></_>
|
1295 |
+
<_>
|
1296 |
+
<rect>
|
1297 |
+
9 17 1 1</rect></_>
|
1298 |
+
<_>
|
1299 |
+
<rect>
|
1300 |
+
9 18 1 1</rect></_>
|
1301 |
+
<_>
|
1302 |
+
<rect>
|
1303 |
+
10 5 1 2</rect></_>
|
1304 |
+
<_>
|
1305 |
+
<rect>
|
1306 |
+
10 5 3 3</rect></_>
|
1307 |
+
<_>
|
1308 |
+
<rect>
|
1309 |
+
10 7 1 5</rect></_>
|
1310 |
+
<_>
|
1311 |
+
<rect>
|
1312 |
+
10 8 1 1</rect></_>
|
1313 |
+
<_>
|
1314 |
+
<rect>
|
1315 |
+
10 9 1 1</rect></_>
|
1316 |
+
<_>
|
1317 |
+
<rect>
|
1318 |
+
10 10 1 1</rect></_>
|
1319 |
+
<_>
|
1320 |
+
<rect>
|
1321 |
+
10 10 1 2</rect></_>
|
1322 |
+
<_>
|
1323 |
+
<rect>
|
1324 |
+
10 14 3 3</rect></_>
|
1325 |
+
<_>
|
1326 |
+
<rect>
|
1327 |
+
10 15 1 1</rect></_>
|
1328 |
+
<_>
|
1329 |
+
<rect>
|
1330 |
+
10 15 2 1</rect></_>
|
1331 |
+
<_>
|
1332 |
+
<rect>
|
1333 |
+
10 16 1 1</rect></_>
|
1334 |
+
<_>
|
1335 |
+
<rect>
|
1336 |
+
10 16 2 1</rect></_>
|
1337 |
+
<_>
|
1338 |
+
<rect>
|
1339 |
+
10 17 1 1</rect></_>
|
1340 |
+
<_>
|
1341 |
+
<rect>
|
1342 |
+
10 21 1 1</rect></_>
|
1343 |
+
<_>
|
1344 |
+
<rect>
|
1345 |
+
11 3 2 2</rect></_>
|
1346 |
+
<_>
|
1347 |
+
<rect>
|
1348 |
+
11 5 1 2</rect></_>
|
1349 |
+
<_>
|
1350 |
+
<rect>
|
1351 |
+
11 5 3 3</rect></_>
|
1352 |
+
<_>
|
1353 |
+
<rect>
|
1354 |
+
11 5 4 6</rect></_>
|
1355 |
+
<_>
|
1356 |
+
<rect>
|
1357 |
+
11 6 1 1</rect></_>
|
1358 |
+
<_>
|
1359 |
+
<rect>
|
1360 |
+
11 7 2 2</rect></_>
|
1361 |
+
<_>
|
1362 |
+
<rect>
|
1363 |
+
11 8 1 2</rect></_>
|
1364 |
+
<_>
|
1365 |
+
<rect>
|
1366 |
+
11 10 1 1</rect></_>
|
1367 |
+
<_>
|
1368 |
+
<rect>
|
1369 |
+
11 10 1 2</rect></_>
|
1370 |
+
<_>
|
1371 |
+
<rect>
|
1372 |
+
11 15 1 1</rect></_>
|
1373 |
+
<_>
|
1374 |
+
<rect>
|
1375 |
+
11 17 1 1</rect></_>
|
1376 |
+
<_>
|
1377 |
+
<rect>
|
1378 |
+
11 18 1 1</rect></_>
|
1379 |
+
<_>
|
1380 |
+
<rect>
|
1381 |
+
12 0 2 2</rect></_>
|
1382 |
+
<_>
|
1383 |
+
<rect>
|
1384 |
+
12 1 2 5</rect></_>
|
1385 |
+
<_>
|
1386 |
+
<rect>
|
1387 |
+
12 2 4 1</rect></_>
|
1388 |
+
<_>
|
1389 |
+
<rect>
|
1390 |
+
12 3 1 3</rect></_>
|
1391 |
+
<_>
|
1392 |
+
<rect>
|
1393 |
+
12 7 3 4</rect></_>
|
1394 |
+
<_>
|
1395 |
+
<rect>
|
1396 |
+
12 10 3 2</rect></_>
|
1397 |
+
<_>
|
1398 |
+
<rect>
|
1399 |
+
12 11 1 1</rect></_>
|
1400 |
+
<_>
|
1401 |
+
<rect>
|
1402 |
+
12 12 3 2</rect></_>
|
1403 |
+
<_>
|
1404 |
+
<rect>
|
1405 |
+
12 14 4 3</rect></_>
|
1406 |
+
<_>
|
1407 |
+
<rect>
|
1408 |
+
12 17 1 1</rect></_>
|
1409 |
+
<_>
|
1410 |
+
<rect>
|
1411 |
+
12 21 2 1</rect></_>
|
1412 |
+
<_>
|
1413 |
+
<rect>
|
1414 |
+
13 6 2 5</rect></_>
|
1415 |
+
<_>
|
1416 |
+
<rect>
|
1417 |
+
13 7 3 5</rect></_>
|
1418 |
+
<_>
|
1419 |
+
<rect>
|
1420 |
+
13 11 3 2</rect></_>
|
1421 |
+
<_>
|
1422 |
+
<rect>
|
1423 |
+
13 17 2 2</rect></_>
|
1424 |
+
<_>
|
1425 |
+
<rect>
|
1426 |
+
13 17 3 2</rect></_>
|
1427 |
+
<_>
|
1428 |
+
<rect>
|
1429 |
+
13 18 1 2</rect></_>
|
1430 |
+
<_>
|
1431 |
+
<rect>
|
1432 |
+
13 18 2 2</rect></_>
|
1433 |
+
<_>
|
1434 |
+
<rect>
|
1435 |
+
14 0 2 2</rect></_>
|
1436 |
+
<_>
|
1437 |
+
<rect>
|
1438 |
+
14 1 1 3</rect></_>
|
1439 |
+
<_>
|
1440 |
+
<rect>
|
1441 |
+
14 2 3 2</rect></_>
|
1442 |
+
<_>
|
1443 |
+
<rect>
|
1444 |
+
14 7 2 1</rect></_>
|
1445 |
+
<_>
|
1446 |
+
<rect>
|
1447 |
+
14 13 2 1</rect></_>
|
1448 |
+
<_>
|
1449 |
+
<rect>
|
1450 |
+
14 13 3 3</rect></_>
|
1451 |
+
<_>
|
1452 |
+
<rect>
|
1453 |
+
14 17 2 2</rect></_>
|
1454 |
+
<_>
|
1455 |
+
<rect>
|
1456 |
+
15 0 2 2</rect></_>
|
1457 |
+
<_>
|
1458 |
+
<rect>
|
1459 |
+
15 0 2 3</rect></_>
|
1460 |
+
<_>
|
1461 |
+
<rect>
|
1462 |
+
15 4 3 2</rect></_>
|
1463 |
+
<_>
|
1464 |
+
<rect>
|
1465 |
+
15 4 3 6</rect></_>
|
1466 |
+
<_>
|
1467 |
+
<rect>
|
1468 |
+
15 6 3 2</rect></_>
|
1469 |
+
<_>
|
1470 |
+
<rect>
|
1471 |
+
15 11 3 4</rect></_>
|
1472 |
+
<_>
|
1473 |
+
<rect>
|
1474 |
+
15 13 3 2</rect></_>
|
1475 |
+
<_>
|
1476 |
+
<rect>
|
1477 |
+
15 17 2 2</rect></_>
|
1478 |
+
<_>
|
1479 |
+
<rect>
|
1480 |
+
15 17 3 2</rect></_>
|
1481 |
+
<_>
|
1482 |
+
<rect>
|
1483 |
+
16 1 2 3</rect></_>
|
1484 |
+
<_>
|
1485 |
+
<rect>
|
1486 |
+
16 3 2 4</rect></_>
|
1487 |
+
<_>
|
1488 |
+
<rect>
|
1489 |
+
16 6 1 1</rect></_>
|
1490 |
+
<_>
|
1491 |
+
<rect>
|
1492 |
+
16 16 2 2</rect></_>
|
1493 |
+
<_>
|
1494 |
+
<rect>
|
1495 |
+
17 1 2 2</rect></_>
|
1496 |
+
<_>
|
1497 |
+
<rect>
|
1498 |
+
17 1 2 5</rect></_>
|
1499 |
+
<_>
|
1500 |
+
<rect>
|
1501 |
+
17 12 2 2</rect></_>
|
1502 |
+
<_>
|
1503 |
+
<rect>
|
1504 |
+
18 0 2 2</rect></_></features></cascade>
|
1505 |
+
</opencv_storage>
|
app/Hackathon_setup/siamese_model.t7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea3df9637c97a70b367c610bdeea3aec58ba233bee2e0d36b2e1a5755eb0ef08
|
3 |
+
size 161026623
|
app/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.0.1"
|
app/config.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from pydantic import AnyHttpUrl, BaseSettings
|
5 |
+
|
6 |
+
class Settings(BaseSettings):
|
7 |
+
API_V1_STR: str = "/api/v1"
|
8 |
+
|
9 |
+
# Meta
|
10 |
+
|
11 |
+
# BACKEND_CORS_ORIGINS is a comma-separated list of origins
|
12 |
+
# e.g: http://localhost,http://localhost:4200,http://localhost:3000
|
13 |
+
BACKEND_CORS_ORIGINS: List[AnyHttpUrl] = [
|
14 |
+
"http://localhost:3000", # type: ignore
|
15 |
+
"http://localhost:8000", # type: ignore
|
16 |
+
"https://localhost:3000", # type: ignore
|
17 |
+
"https://localhost:8000", # type: ignore
|
18 |
+
]
|
19 |
+
|
20 |
+
PROJECT_NAME: str = "Recognition API"
|
21 |
+
|
22 |
+
class Config:
|
23 |
+
case_sensitive = True
|
24 |
+
|
25 |
+
settings = Settings()
|
app/main.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
sys.path.append(str(Path(__file__).resolve().parent.parent))
|
4 |
+
#print(sys.path)
|
5 |
+
from typing import Any
|
6 |
+
|
7 |
+
from fastapi import FastAPI, Request, APIRouter, File, UploadFile
|
8 |
+
from fastapi.staticfiles import StaticFiles
|
9 |
+
from fastapi.templating import Jinja2Templates
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from app.config import settings
|
12 |
+
from app import __version__
|
13 |
+
from app.Hackathon_setup import face_recognition, exp_recognition
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
|
19 |
+
app = FastAPI(
|
20 |
+
title=settings.PROJECT_NAME, openapi_url=f"{settings.API_V1_STR}/openapi.json"
|
21 |
+
)
|
22 |
+
|
23 |
+
# To store files uploaded by users
|
24 |
+
app.mount("/static", StaticFiles(directory="app/static"), name="static")
|
25 |
+
|
26 |
+
# To access Templates directory
|
27 |
+
templates = Jinja2Templates(directory="app/templates")
|
28 |
+
|
29 |
+
simi_filename1 = None
|
30 |
+
simi_filename2 = None
|
31 |
+
face_rec_filename = None
|
32 |
+
expr_rec_filename = None
|
33 |
+
|
34 |
+
|
35 |
+
#################################### Home Page endpoints #################################################
|
36 |
+
@app.get("/")
|
37 |
+
async def root(request: Request):
|
38 |
+
return templates.TemplateResponse("index.html", {'request': request,})
|
39 |
+
|
40 |
+
|
41 |
+
#################################### Face Similarity endpoints #################################################
|
42 |
+
@app.get("/similarity/")
|
43 |
+
async def similarity_root(request: Request):
|
44 |
+
return templates.TemplateResponse("similarity.html", {'request': request,})
|
45 |
+
|
46 |
+
|
47 |
+
@app.post("/predict_similarity/")
|
48 |
+
async def create_upload_files(request: Request, file1: UploadFile = File(...), file2: UploadFile = File(...)):
|
49 |
+
global simi_filename1
|
50 |
+
global simi_filename2
|
51 |
+
|
52 |
+
if 'image' in file1.content_type:
|
53 |
+
contents = await file1.read()
|
54 |
+
simi_filename1 = 'app/static/' + file1.filename
|
55 |
+
with open(simi_filename1, 'wb') as f:
|
56 |
+
f.write(contents)
|
57 |
+
|
58 |
+
if 'image' in file2.content_type:
|
59 |
+
contents = await file2.read()
|
60 |
+
simi_filename2 = 'app/static/' + file2.filename
|
61 |
+
with open(simi_filename2, 'wb') as f:
|
62 |
+
f.write(contents)
|
63 |
+
|
64 |
+
img1 = Image.open(simi_filename1)
|
65 |
+
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8)
|
66 |
+
|
67 |
+
img2 = Image.open(simi_filename2)
|
68 |
+
img2 = np.array(img2).reshape(img2.size[1], img2.size[0], 3).astype(np.uint8)
|
69 |
+
|
70 |
+
result = face_recognition.get_similarity(img1, img2)
|
71 |
+
#print(result)
|
72 |
+
|
73 |
+
return templates.TemplateResponse("predict_similarity.html", {"request": request,
|
74 |
+
"result": np.round(result, 3),
|
75 |
+
"simi_filename1": '../static/'+file1.filename,
|
76 |
+
"simi_filename2": '../static/'+file2.filename,})
|
77 |
+
|
78 |
+
|
79 |
+
#################################### Face Recognition endpoints #################################################
|
80 |
+
@app.get("/face_recognition/")
|
81 |
+
async def face_recognition_root(request: Request):
|
82 |
+
return templates.TemplateResponse("face_recognition.html", {'request': request,})
|
83 |
+
|
84 |
+
|
85 |
+
@app.post("/predict_face_recognition/")
|
86 |
+
async def create_upload_files(request: Request, file3: UploadFile = File(...)):
|
87 |
+
global face_rec_filename
|
88 |
+
|
89 |
+
if 'image' in file3.content_type:
|
90 |
+
contents = await file3.read()
|
91 |
+
face_rec_filename = 'app/static/' + file3.filename
|
92 |
+
with open(face_rec_filename, 'wb') as f:
|
93 |
+
f.write(contents)
|
94 |
+
|
95 |
+
img1 = Image.open(face_rec_filename)
|
96 |
+
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8)
|
97 |
+
|
98 |
+
result = face_recognition.get_face_class(img1)
|
99 |
+
print(result)
|
100 |
+
|
101 |
+
return templates.TemplateResponse("predict_face_recognition.html", {"request": request,
|
102 |
+
"result": result,
|
103 |
+
"face_rec_filename": '../static/'+file3.filename,})
|
104 |
+
|
105 |
+
|
106 |
+
#################################### Expresion Recognition endpoints #################################################
|
107 |
+
@app.get("/expr_recognition/")
|
108 |
+
async def expr_recognition_root(request: Request):
|
109 |
+
return templates.TemplateResponse("expr_recognition.html", {'request': request,})
|
110 |
+
|
111 |
+
|
112 |
+
@app.post("/predict_expr_recognition/")
|
113 |
+
async def create_upload_files(request: Request, file4: UploadFile = File(...)):
|
114 |
+
global expr_rec_filename
|
115 |
+
|
116 |
+
if 'image' in file4.content_type:
|
117 |
+
contents = await file4.read()
|
118 |
+
expr_rec_filename = 'app/static/' + file4.filename
|
119 |
+
with open(expr_rec_filename, 'wb') as f:
|
120 |
+
f.write(contents)
|
121 |
+
|
122 |
+
img1 = Image.open(expr_rec_filename)
|
123 |
+
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8)
|
124 |
+
|
125 |
+
result = exp_recognition.get_expression(img1)
|
126 |
+
print(result)
|
127 |
+
|
128 |
+
return templates.TemplateResponse("predict_expr_recognition.html", {"request": request,
|
129 |
+
"result": result,
|
130 |
+
"expr_rec_filename": '../static/'+file4.filename,})
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# Set all CORS enabled origins
|
135 |
+
if settings.BACKEND_CORS_ORIGINS:
|
136 |
+
app.add_middleware(
|
137 |
+
CORSMiddleware,
|
138 |
+
allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS],
|
139 |
+
allow_credentials=True,
|
140 |
+
allow_methods=["*"],
|
141 |
+
allow_headers=["*"],
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
# Start app
|
146 |
+
if __name__ == "__main__":
|
147 |
+
import uvicorn
|
148 |
+
uvicorn.run(app, host="0.0.0.0", port=8001)
|
app/static/Person1_1697805233.jpg
ADDED
app/templates/expr_recognition.html
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Index</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Expression Recognition</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<ul>
|
15 |
+
<!li>
|
16 |
+
<br>
|
17 |
+
<form action="/predict_expr_recognition/" enctype="multipart/form-data" method="post">
|
18 |
+
<span style="font-weight:bold;font-family:sans-serif">Upload Image:</span> <br><br>
|
19 |
+
<input name="file4" type="file" onchange="readURL(this);" />
|
20 |
+
<br><br><br>
|
21 |
+
<button type="submit">Recognize Expression</button>
|
22 |
+
</form>
|
23 |
+
<!/li>
|
24 |
+
<br><br>
|
25 |
+
<form action="/" method="get">
|
26 |
+
<button type="submit">Home</button>
|
27 |
+
</form>
|
28 |
+
</ul>
|
29 |
+
</fieldset>
|
30 |
+
</div>
|
31 |
+
</body>
|
32 |
+
</html>
|
app/templates/face_recognition.html
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Index</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Face Recognition</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<ul>
|
15 |
+
<!li>
|
16 |
+
<br>
|
17 |
+
<form action="/predict_face_recognition/" enctype="multipart/form-data" method="post">
|
18 |
+
<span style="font-weight:bold;font-family:sans-serif">Upload Image:</span> <br><br>
|
19 |
+
<input name="file3" type="file" onchange="readURL(this);" />
|
20 |
+
<br><br><br>
|
21 |
+
<button type="submit">Recognize Face</button>
|
22 |
+
</form>
|
23 |
+
<!/li>
|
24 |
+
<br><br>
|
25 |
+
<form action="/" method="get">
|
26 |
+
<button type="submit">Home</button>
|
27 |
+
</form>
|
28 |
+
</ul>
|
29 |
+
</fieldset>
|
30 |
+
</div>
|
31 |
+
</body>
|
32 |
+
</html>
|
app/templates/index.html
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Index</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Recognition Application</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<ul>
|
15 |
+
<li><span style="font-weight:bold;font-family:sans-serif">Select a task:</span>
|
16 |
+
<br><br><br>
|
17 |
+
<form action="{{ url_for('similarity_root') }}"><button>Face Similarity</button></form>
|
18 |
+
<br><br>
|
19 |
+
<form action="{{ url_for('face_recognition_root') }}"><button>Face Recognition</button></form>
|
20 |
+
<br><br>
|
21 |
+
<form action="{{ url_for('expr_recognition_root') }}"><button>Expression Recognition</button></form>
|
22 |
+
<br>
|
23 |
+
</li>
|
24 |
+
<br>
|
25 |
+
</ul>
|
26 |
+
</fieldset>
|
27 |
+
</div>
|
28 |
+
</body>
|
29 |
+
</html>
|
app/templates/predict_expr_recognition.html
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Predict</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Expression Recognition</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<h2>
|
15 |
+
<center>
|
16 |
+
<span style="font-weight:bold;font-family:sans-serif">Prediction: </span>
|
17 |
+
<span style="font-weight:bold;color:blue"> {{result}}</span>
|
18 |
+
</center>
|
19 |
+
</h2>
|
20 |
+
<h3><center><span style="font-weight:bold;font-family:sans-serif">Input image:</span></Input></center></h3>
|
21 |
+
<p>
|
22 |
+
<center>
|
23 |
+
<img src="{{expr_rec_filename}}" alt={{expr_rec_filename1}} width='150' height='150'>
|
24 |
+
</center>
|
25 |
+
</p>
|
26 |
+
<br>
|
27 |
+
<form action="/expr_recognition/" method="get">
|
28 |
+
<center><button type="submit">Check Another Input</button></center>
|
29 |
+
</form>
|
30 |
+
<br>
|
31 |
+
<form action="/" method="get">
|
32 |
+
<center><button type="submit">Home</button></center>
|
33 |
+
</form>
|
34 |
+
</fieldset>
|
35 |
+
</div>
|
36 |
+
</body>
|
37 |
+
</html>
|
app/templates/predict_face_recognition.html
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Predict</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Face Recognition</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<h2>
|
15 |
+
<center>
|
16 |
+
<span style="font-weight:bold;font-family:sans-serif">Prediction: </span>
|
17 |
+
<span style="font-weight:bold;color:blue"> {{result}}</span>
|
18 |
+
</center>
|
19 |
+
</h2>
|
20 |
+
<h3><center><span style="font-weight:bold;font-family:sans-serif">Input image:</span></Input></center></h3>
|
21 |
+
<p>
|
22 |
+
<center>
|
23 |
+
<img src="{{face_rec_filename}}" alt={{face_rec_filename1}} width='150' height='150'>
|
24 |
+
</center>
|
25 |
+
</p>
|
26 |
+
<br>
|
27 |
+
<form action="/face_recognition/" method="get">
|
28 |
+
<center><button type="submit">Check Another Input</button></center>
|
29 |
+
</form>
|
30 |
+
<br>
|
31 |
+
<form action="/" method="get">
|
32 |
+
<center><button type="submit">Home</button></center>
|
33 |
+
</form>
|
34 |
+
</fieldset>
|
35 |
+
</div>
|
36 |
+
</body>
|
37 |
+
</html>
|
app/templates/predict_similarity.html
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Predict</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Face Similarity</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<h2>
|
15 |
+
<center>
|
16 |
+
<span style="font-weight:bold;font-family:sans-serif">Dissimilarity:</span>
|
17 |
+
<span style="font-weight:bold;color:blue"> {{result}}</span>
|
18 |
+
</center>
|
19 |
+
</h2>
|
20 |
+
<h3><center><span style="font-weight:bold;font-family:sans-serif">Input images:</span></Input></center></h3>
|
21 |
+
<p>
|
22 |
+
<center>
|
23 |
+
<img src="{{simi_filename1}}" alt={{simi_filename1}} width='150' height='150'>
|
24 |
+
<img src="{{simi_filename2}}" alt={{simi_filename2}} width='150' height='150'>
|
25 |
+
</center>
|
26 |
+
</p>
|
27 |
+
<br>
|
28 |
+
<form action="/similarity/" method="get">
|
29 |
+
<center><button type="submit">Check Another Input</button></center>
|
30 |
+
</form>
|
31 |
+
<br>
|
32 |
+
<form action="/" method="get">
|
33 |
+
<center><button type="submit">Home</button></center>
|
34 |
+
</form>
|
35 |
+
</fieldset>
|
36 |
+
</div>
|
37 |
+
</body>
|
38 |
+
</html>
|
app/templates/similarity.html
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>Index</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<div>
|
8 |
+
<h1 style="background-color:LightGray;">
|
9 |
+
<center>Face Similarity</center>
|
10 |
+
</h1>
|
11 |
+
</div>
|
12 |
+
<div>
|
13 |
+
<fieldset>
|
14 |
+
<ul>
|
15 |
+
<!li>
|
16 |
+
<br>
|
17 |
+
<form action="/predict_similarity/" enctype="multipart/form-data" method="post">
|
18 |
+
<span style="font-weight:bold;font-family:sans-serif">Upload First Image:</span> <br><br>
|
19 |
+
<input name="file1" type="file" onchange="readURL(this);" />
|
20 |
+
<br><br><br>
|
21 |
+
<span style="font-weight:bold;font-family:sans-serif">Upload Second Image:</span> <br><br>
|
22 |
+
<input name="file2" type="file" onchange="readURL(this);" />
|
23 |
+
<br><br><br><br>
|
24 |
+
<button type="submit">Check Similarity</button>
|
25 |
+
</form>
|
26 |
+
<!/li>
|
27 |
+
<br><br>
|
28 |
+
<form action="/" method="get">
|
29 |
+
<button type="submit">Home</button>
|
30 |
+
</form>
|
31 |
+
</ul>
|
32 |
+
</fieldset>
|
33 |
+
</div>
|
34 |
+
</body>
|
35 |
+
</html>
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uvicorn==0.17.6
|
2 |
+
fastapi==0.99.1
|
3 |
+
pydantic==1.10.10
|
4 |
+
requests==2.23.0
|
5 |
+
jinja2==3.1.2
|
6 |
+
python-multipart==0.0.6
|
7 |
+
|
8 |
+
scikit-learn==1.2.2
|
9 |
+
joblib==1.3.2
|
10 |
+
Pillow==9.4.0
|
11 |
+
torch==2.1.0
|
12 |
+
torchvision==0.16.0
|
13 |
+
matplotlib==3.7.1
|
14 |
+
numpy
|
15 |
+
pandas
|
16 |
+
#opencv-python==4.8.0.76
|
17 |
+
opencv-python==4.5.5.64
|