Spaces:
Running
Running
Update mtdna_backend.py
Browse files- mtdna_backend.py +1032 -944
mtdna_backend.py
CHANGED
|
@@ -1,945 +1,1033 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from collections import Counter
|
| 3 |
-
import csv
|
| 4 |
-
import os
|
| 5 |
-
from functools import lru_cache
|
| 6 |
-
#import app
|
| 7 |
-
from mtdna_classifier import classify_sample_location
|
| 8 |
-
import data_preprocess, model, pipeline
|
| 9 |
-
import subprocess
|
| 10 |
-
import json
|
| 11 |
-
import pandas as pd
|
| 12 |
-
import io
|
| 13 |
-
import re
|
| 14 |
-
import tempfile
|
| 15 |
-
import gspread
|
| 16 |
-
from oauth2client.service_account import ServiceAccountCredentials
|
| 17 |
-
from io import StringIO
|
| 18 |
-
import hashlib
|
| 19 |
-
import threading
|
| 20 |
-
|
| 21 |
-
# @lru_cache(maxsize=3600)
|
| 22 |
-
# def classify_sample_location_cached(accession):
|
| 23 |
-
# return classify_sample_location(accession)
|
| 24 |
-
|
| 25 |
-
#@lru_cache(maxsize=3600)
|
| 26 |
-
def pipeline_classify_sample_location_cached(accession,stop_flag=None, save_df=None):
|
| 27 |
-
print("inside pipeline_classify_sample_location_cached, and [accession] is ", [accession])
|
| 28 |
-
print("len of save df: ", len(save_df))
|
| 29 |
-
return pipeline.pipeline_with_gemini([accession],stop_flag=stop_flag, save_df=save_df)
|
| 30 |
-
|
| 31 |
-
# Count and suggest final location
|
| 32 |
-
# def compute_final_suggested_location(rows):
|
| 33 |
-
# candidates = [
|
| 34 |
-
# row.get("Predicted Location", "").strip()
|
| 35 |
-
# for row in rows
|
| 36 |
-
# if row.get("Predicted Location", "").strip().lower() not in ["", "sample id not found", "unknown"]
|
| 37 |
-
# ] + [
|
| 38 |
-
# row.get("Inferred Region", "").strip()
|
| 39 |
-
# for row in rows
|
| 40 |
-
# if row.get("Inferred Region", "").strip().lower() not in ["", "sample id not found", "unknown"]
|
| 41 |
-
# ]
|
| 42 |
-
|
| 43 |
-
# if not candidates:
|
| 44 |
-
# return Counter(), ("Unknown", 0)
|
| 45 |
-
# # Step 1: Combine into one string and split using regex to handle commas, line breaks, etc.
|
| 46 |
-
# tokens = []
|
| 47 |
-
# for item in candidates:
|
| 48 |
-
# # Split by comma, whitespace, and newlines
|
| 49 |
-
# parts = re.split(r'[\s,]+', item)
|
| 50 |
-
# tokens.extend(parts)
|
| 51 |
-
|
| 52 |
-
# # Step 2: Clean and normalize tokens
|
| 53 |
-
# tokens = [word.strip() for word in tokens if word.strip().isalpha()] # Keep only alphabetic tokens
|
| 54 |
-
|
| 55 |
-
# # Step 3: Count
|
| 56 |
-
# counts = Counter(tokens)
|
| 57 |
-
|
| 58 |
-
# # Step 4: Get most common
|
| 59 |
-
# top_location, count = counts.most_common(1)[0]
|
| 60 |
-
# return counts, (top_location, count)
|
| 61 |
-
|
| 62 |
-
# Store feedback (with required fields)
|
| 63 |
-
|
| 64 |
-
def store_feedback_to_google_sheets(accession, answer1, answer2, contact=""):
|
| 65 |
-
if not answer1.strip() or not answer2.strip():
|
| 66 |
-
return "β οΈ Please answer both questions before submitting."
|
| 67 |
-
|
| 68 |
-
try:
|
| 69 |
-
# β
Step: Load credentials from Hugging Face secret
|
| 70 |
-
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 71 |
-
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
| 72 |
-
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 73 |
-
|
| 74 |
-
# Connect to Google Sheet
|
| 75 |
-
client = gspread.authorize(creds)
|
| 76 |
-
sheet = client.open("feedback_mtdna").sheet1 # make sure sheet name matches
|
| 77 |
-
|
| 78 |
-
# Append feedback
|
| 79 |
-
sheet.append_row([accession, answer1, answer2, contact])
|
| 80 |
-
return "β
Feedback submitted. Thank you!"
|
| 81 |
-
|
| 82 |
-
except Exception as e:
|
| 83 |
-
return f"β Error submitting feedback: {e}"
|
| 84 |
-
|
| 85 |
-
import re
|
| 86 |
-
|
| 87 |
-
ACCESSION_REGEX = re.compile(r'^[A-Z]{1,4}_?\d{6}(\.\d+)?$')
|
| 88 |
-
|
| 89 |
-
def is_valid_accession(acc):
|
| 90 |
-
return bool(ACCESSION_REGEX.match(acc))
|
| 91 |
-
|
| 92 |
-
# helper function to extract accessions
|
| 93 |
-
def extract_accessions_from_input(file=None, raw_text=""):
|
| 94 |
-
print(f"RAW TEXT RECEIVED: {raw_text}")
|
| 95 |
-
accessions, invalid_accessions = [], []
|
| 96 |
-
seen = set()
|
| 97 |
-
if file:
|
| 98 |
-
try:
|
| 99 |
-
if file.name.endswith(".csv"):
|
| 100 |
-
df = pd.read_csv(file)
|
| 101 |
-
elif file.name.endswith(".xlsx"):
|
| 102 |
-
df = pd.read_excel(file)
|
| 103 |
-
else:
|
| 104 |
-
return [], "Unsupported file format. Please upload CSV or Excel."
|
| 105 |
-
for acc in df.iloc[:, 0].dropna().astype(str).str.strip():
|
| 106 |
-
if acc not in seen:
|
| 107 |
-
if is_valid_accession(acc):
|
| 108 |
-
accessions.append(acc)
|
| 109 |
-
seen.add(acc)
|
| 110 |
-
else:
|
| 111 |
-
invalid_accessions.append(acc)
|
| 112 |
-
|
| 113 |
-
except Exception as e:
|
| 114 |
-
return [],[], f"Failed to read file: {e}"
|
| 115 |
-
|
| 116 |
-
if raw_text:
|
| 117 |
-
try:
|
| 118 |
-
text_ids = [s.strip() for s in re.split(r"[\n,;\t]", raw_text) if s.strip()]
|
| 119 |
-
for acc in text_ids:
|
| 120 |
-
if acc not in seen:
|
| 121 |
-
if is_valid_accession(acc):
|
| 122 |
-
accessions.append(acc)
|
| 123 |
-
seen.add(acc)
|
| 124 |
-
else:
|
| 125 |
-
invalid_accessions.append(acc)
|
| 126 |
-
except Exception as e:
|
| 127 |
-
return [],[], f"Failed to read file: {e}"
|
| 128 |
-
|
| 129 |
-
return list(accessions), list(invalid_accessions), None
|
| 130 |
-
# β
Add a new helper to backend: `filter_unprocessed_accessions()`
|
| 131 |
-
def get_incomplete_accessions(file_path):
|
| 132 |
-
df = pd.read_excel(file_path)
|
| 133 |
-
|
| 134 |
-
incomplete_accessions = []
|
| 135 |
-
for _, row in df.iterrows():
|
| 136 |
-
sample_id = str(row.get("Sample ID", "")).strip()
|
| 137 |
-
|
| 138 |
-
# Skip if no sample ID
|
| 139 |
-
if not sample_id:
|
| 140 |
-
continue
|
| 141 |
-
|
| 142 |
-
# Drop the Sample ID and check if the rest is empty
|
| 143 |
-
other_cols = row.drop(labels=["Sample ID"], errors="ignore")
|
| 144 |
-
if other_cols.isna().all() or (other_cols.astype(str).str.strip() == "").all():
|
| 145 |
-
# Extract the accession number from the sample ID using regex
|
| 146 |
-
match = re.search(r"\b[A-Z]{2,4}\d{4,}", sample_id)
|
| 147 |
-
if match:
|
| 148 |
-
incomplete_accessions.append(match.group(0))
|
| 149 |
-
print(len(incomplete_accessions))
|
| 150 |
-
return incomplete_accessions
|
| 151 |
-
|
| 152 |
-
# GOOGLE_SHEET_NAME = "known_samples"
|
| 153 |
-
# USAGE_DRIVE_FILENAME = "user_usage_log.json"
|
| 154 |
-
|
| 155 |
-
def summarize_results(accession, stop_flag=None):
|
| 156 |
-
# Early bail
|
| 157 |
-
if stop_flag is not None and stop_flag.value:
|
| 158 |
-
print(f"π Skipping {accession} before starting.")
|
| 159 |
-
return []
|
| 160 |
-
# try cache first
|
| 161 |
-
cached = check_known_output(accession)
|
| 162 |
-
if cached:
|
| 163 |
-
print(f"β
Using cached result for {accession}")
|
| 164 |
-
return [[
|
| 165 |
-
cached["Sample ID"] or "unknown",
|
| 166 |
-
cached["Predicted Country"] or "unknown",
|
| 167 |
-
cached["Country Explanation"] or "unknown",
|
| 168 |
-
cached["Predicted Sample Type"] or "unknown",
|
| 169 |
-
cached["Sample Type Explanation"] or "unknown",
|
| 170 |
-
cached["Sources"] or "No Links",
|
| 171 |
-
cached["Time cost"]
|
| 172 |
-
]]
|
| 173 |
-
# only run when nothing in the cache
|
| 174 |
-
try:
|
| 175 |
-
print("try gemini pipeline: ",accession)
|
| 176 |
-
# β
Load credentials from Hugging Face secret
|
| 177 |
-
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 178 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 179 |
-
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 180 |
-
client = gspread.authorize(creds)
|
| 181 |
-
|
| 182 |
-
spreadsheet = client.open("known_samples")
|
| 183 |
-
sheet = spreadsheet.sheet1
|
| 184 |
-
|
| 185 |
-
data = sheet.get_all_values()
|
| 186 |
-
if not data:
|
| 187 |
-
print("β οΈ Google Sheet 'known_samples' is empty.")
|
| 188 |
-
return None
|
| 189 |
-
|
| 190 |
-
save_df = pd.DataFrame(data[1:], columns=data[0])
|
| 191 |
-
print("before pipeline, len of save df: ", len(save_df))
|
| 192 |
-
outputs = pipeline_classify_sample_location_cached(accession, stop_flag, save_df)
|
| 193 |
-
if stop_flag is not None and stop_flag.value:
|
| 194 |
-
print(f"π Skipped {accession} mid-pipeline.")
|
| 195 |
-
return []
|
| 196 |
-
# outputs = {'KU131308': {'isolate':'BRU18',
|
| 197 |
-
# 'country': {'brunei': ['ncbi',
|
| 198 |
-
# 'rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
|
| 199 |
-
# 'sample_type': {'modern':
|
| 200 |
-
# ['rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
|
| 201 |
-
# 'query_cost': 9.754999999999999e-05,
|
| 202 |
-
# 'time_cost': '24.776 seconds',
|
| 203 |
-
# 'source': ['https://doi.org/10.1007/s00439-015-1620-z',
|
| 204 |
-
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM1_ESM.pdf',
|
| 205 |
-
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM2_ESM.xls']}}
|
| 206 |
-
except Exception as e:
|
| 207 |
-
return []#, f"Error: {e}", f"Error: {e}", f"Error: {e}"
|
| 208 |
-
|
| 209 |
-
if accession not in outputs:
|
| 210 |
-
print("no accession in output ", accession)
|
| 211 |
-
return []#, "Accession not found in results.", "Accession not found in results.", "Accession not found in results."
|
| 212 |
-
|
| 213 |
-
row_score = []
|
| 214 |
-
rows = []
|
| 215 |
-
save_rows = []
|
| 216 |
-
for key in outputs:
|
| 217 |
-
pred_country, pred_sample, country_explanation, sample_explanation = "unknown","unknown","unknown","unknown"
|
| 218 |
-
for section, results in outputs[key].items():
|
| 219 |
-
if section == "country" or section =="sample_type":
|
| 220 |
-
pred_output = []#"\n".join(list(results.keys()))
|
| 221 |
-
output_explanation = ""
|
| 222 |
-
for result, content in results.items():
|
| 223 |
-
if len(result) == 0: result = "unknown"
|
| 224 |
-
if len(content) == 0: output_explanation = "unknown"
|
| 225 |
-
else:
|
| 226 |
-
output_explanation += 'Method: ' + "\nMethod: ".join(content) + "\n"
|
| 227 |
-
pred_output.append(result)
|
| 228 |
-
pred_output = "\n".join(pred_output)
|
| 229 |
-
if section == "country":
|
| 230 |
-
pred_country, country_explanation = pred_output, output_explanation
|
| 231 |
-
elif section == "sample_type":
|
| 232 |
-
pred_sample, sample_explanation = pred_output, output_explanation
|
| 233 |
-
if outputs[key]["isolate"].lower()!="unknown":
|
| 234 |
-
label = key + "(Isolate: " + outputs[key]["isolate"] + ")"
|
| 235 |
-
else: label = key
|
| 236 |
-
if len(outputs[key]["source"]) == 0: outputs[key]["source"] = ["No Links"]
|
| 237 |
-
row = {
|
| 238 |
-
"Sample ID": label or "unknown",
|
| 239 |
-
"Predicted Country": pred_country or "unknown",
|
| 240 |
-
"Country Explanation": country_explanation or "unknown",
|
| 241 |
-
"Predicted Sample Type":pred_sample or "unknown",
|
| 242 |
-
"Sample Type Explanation":sample_explanation or "unknown",
|
| 243 |
-
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
|
| 244 |
-
"Time cost": outputs[key]["time_cost"]
|
| 245 |
-
}
|
| 246 |
-
#row_score.append(row)
|
| 247 |
-
rows.append(list(row.values()))
|
| 248 |
-
|
| 249 |
-
save_row = {
|
| 250 |
-
"Sample ID": label or "unknown",
|
| 251 |
-
"Predicted Country": pred_country or "unknown",
|
| 252 |
-
"Country Explanation": country_explanation or "unknown",
|
| 253 |
-
"Predicted Sample Type":pred_sample or "unknown",
|
| 254 |
-
"Sample Type Explanation":sample_explanation or "unknown",
|
| 255 |
-
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
|
| 256 |
-
"Query_cost": outputs[key]["query_cost"] or "",
|
| 257 |
-
"Time cost": outputs[key]["time_cost"] or "",
|
| 258 |
-
"file_chunk":outputs[key]["file_chunk"] or "",
|
| 259 |
-
"file_all_output":outputs[key]["file_all_output"] or ""
|
| 260 |
-
}
|
| 261 |
-
#row_score.append(row)
|
| 262 |
-
save_rows.append(list(save_row.values()))
|
| 263 |
-
|
| 264 |
-
# #location_counts, (final_location, count) = compute_final_suggested_location(row_score)
|
| 265 |
-
# summary_lines = [f"### π§ Location Summary:\n"]
|
| 266 |
-
# summary_lines += [f"- **{loc}**: {cnt} times" for loc, cnt in location_counts.items()]
|
| 267 |
-
# summary_lines.append(f"\n**Final Suggested Location:** πΊοΈ **{final_location}** (mentioned {count} times)")
|
| 268 |
-
# summary = "\n".join(summary_lines)
|
| 269 |
-
|
| 270 |
-
# save the new running sample to known excel file
|
| 271 |
-
# try:
|
| 272 |
-
# df_new = pd.DataFrame(save_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Query_cost","Time cost"])
|
| 273 |
-
# if os.path.exists(KNOWN_OUTPUT_PATH):
|
| 274 |
-
# df_old = pd.read_excel(KNOWN_OUTPUT_PATH)
|
| 275 |
-
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 276 |
-
# else:
|
| 277 |
-
# df_combined = df_new
|
| 278 |
-
# df_combined.to_excel(KNOWN_OUTPUT_PATH, index=False)
|
| 279 |
-
# except Exception as e:
|
| 280 |
-
# print(f"β οΈ Failed to save known output: {e}")
|
| 281 |
-
# try:
|
| 282 |
-
# df_new = pd.DataFrame(save_rows, columns=[
|
| 283 |
-
# "Sample ID", "Predicted Country", "Country Explanation",
|
| 284 |
-
# "Predicted Sample Type", "Sample Type Explanation",
|
| 285 |
-
# "Sources", "Query_cost", "Time cost"
|
| 286 |
-
# ])
|
| 287 |
-
|
| 288 |
-
# # β
Google Sheets API setup
|
| 289 |
-
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 290 |
-
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 291 |
-
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 292 |
-
# client = gspread.authorize(creds)
|
| 293 |
-
|
| 294 |
-
# # β
Open the known_samples sheet
|
| 295 |
-
# spreadsheet = client.open("known_samples") # Replace with your sheet name
|
| 296 |
-
# sheet = spreadsheet.sheet1
|
| 297 |
-
|
| 298 |
-
# # β
Read old data
|
| 299 |
-
# existing_data = sheet.get_all_values()
|
| 300 |
-
# if existing_data:
|
| 301 |
-
# df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 302 |
-
# else:
|
| 303 |
-
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 304 |
-
|
| 305 |
-
# # β
Combine and remove duplicates
|
| 306 |
-
# df_combined = pd.concat([df_old, df_new], ignore_index=True).drop_duplicates(subset="Sample ID")
|
| 307 |
-
|
| 308 |
-
# # β
Clear and write back
|
| 309 |
-
# sheet.clear()
|
| 310 |
-
# sheet.update([df_combined.columns.values.tolist()] + df_combined.values.tolist())
|
| 311 |
-
|
| 312 |
-
# except Exception as e:
|
| 313 |
-
# print(f"β οΈ Failed to save known output to Google Sheets: {e}")
|
| 314 |
-
try:
|
| 315 |
-
# Prepare as DataFrame
|
| 316 |
-
df_new = pd.DataFrame(save_rows, columns=[
|
| 317 |
-
"Sample ID", "Predicted Country", "Country Explanation",
|
| 318 |
-
"Predicted Sample Type", "Sample Type Explanation",
|
| 319 |
-
"Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
|
| 320 |
-
])
|
| 321 |
-
|
| 322 |
-
# β
Setup Google Sheets
|
| 323 |
-
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 324 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 325 |
-
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 326 |
-
client = gspread.authorize(creds)
|
| 327 |
-
spreadsheet = client.open("known_samples")
|
| 328 |
-
sheet = spreadsheet.sheet1
|
| 329 |
-
|
| 330 |
-
# β
Read existing data
|
| 331 |
-
existing_data = sheet.get_all_values()
|
| 332 |
-
|
| 333 |
-
if existing_data:
|
| 334 |
-
df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 335 |
-
|
| 336 |
-
else:
|
| 337 |
-
|
| 338 |
-
df_old = pd.DataFrame(columns=[
|
| 339 |
-
"Sample ID", "Actual_country", "Actual_sample_type", "Country Explanation",
|
| 340 |
-
"Match_country", "Match_sample_type", "Predicted Country", "Predicted Sample Type",
|
| 341 |
-
"Query_cost", "Sample Type Explanation", "Sources", "Time cost", "file_chunk", "file_all_output"
|
| 342 |
-
])
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
# β
Index by Sample ID
|
| 346 |
-
df_old.set_index("Sample ID", inplace=True)
|
| 347 |
-
df_new.set_index("Sample ID", inplace=True)
|
| 348 |
-
|
| 349 |
-
# β
Update only matching fields
|
| 350 |
-
update_columns = [
|
| 351 |
-
"Predicted Country", "Predicted Sample Type", "Country Explanation",
|
| 352 |
-
"Sample Type Explanation", "Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
|
| 353 |
-
]
|
| 354 |
-
for idx, row in df_new.iterrows():
|
| 355 |
-
if idx not in df_old.index:
|
| 356 |
-
df_old.loc[idx] = "" # new row, fill empty first
|
| 357 |
-
for col in update_columns:
|
| 358 |
-
if pd.notna(row[col]) and row[col] != "":
|
| 359 |
-
df_old.at[idx, col] = row[col]
|
| 360 |
-
|
| 361 |
-
# β
Reset and write back
|
| 362 |
-
df_old.reset_index(inplace=True)
|
| 363 |
-
sheet.clear()
|
| 364 |
-
sheet.update([df_old.columns.values.tolist()] + df_old.values.tolist())
|
| 365 |
-
print("β
Match results saved to known_samples.")
|
| 366 |
-
|
| 367 |
-
except Exception as e:
|
| 368 |
-
print(f"β Failed to update known_samples: {e}")
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
return rows#, summary, labelAncient_Modern, explain_label
|
| 372 |
-
|
| 373 |
-
# save the batch input in excel file
|
| 374 |
-
# def save_to_excel(all_rows, summary_text, flag_text, filename):
|
| 375 |
-
# with pd.ExcelWriter(filename) as writer:
|
| 376 |
-
# # Save table
|
| 377 |
-
# df_new = pd.DataFrame(all_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
|
| 378 |
-
# df.to_excel(writer, sheet_name="Detailed Results", index=False)
|
| 379 |
-
# try:
|
| 380 |
-
# df_old = pd.read_excel(filename)
|
| 381 |
-
# except:
|
| 382 |
-
# df_old = pd.DataFrame([[]], columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
|
| 383 |
-
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 384 |
-
# # if os.path.exists(filename):
|
| 385 |
-
# # df_old = pd.read_excel(filename)
|
| 386 |
-
# # df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 387 |
-
# # else:
|
| 388 |
-
# # df_combined = df_new
|
| 389 |
-
# df_combined.to_excel(filename, index=False)
|
| 390 |
-
# # # Save summary
|
| 391 |
-
# # summary_df = pd.DataFrame({"Summary": [summary_text]})
|
| 392 |
-
# # summary_df.to_excel(writer, sheet_name="Summary", index=False)
|
| 393 |
-
|
| 394 |
-
# # # Save flag
|
| 395 |
-
# # flag_df = pd.DataFrame({"Flag": [flag_text]})
|
| 396 |
-
# # flag_df.to_excel(writer, sheet_name="Ancient_Modern_Flag", index=False)
|
| 397 |
-
# def save_to_excel(all_rows, summary_text, flag_text, filename):
|
| 398 |
-
# df_new = pd.DataFrame(all_rows, columns=[
|
| 399 |
-
# "Sample ID", "Predicted Country", "Country Explanation",
|
| 400 |
-
# "Predicted Sample Type", "Sample Type Explanation",
|
| 401 |
-
# "Sources", "Time cost"
|
| 402 |
-
# ])
|
| 403 |
-
|
| 404 |
-
# try:
|
| 405 |
-
# if os.path.exists(filename):
|
| 406 |
-
# df_old = pd.read_excel(filename)
|
| 407 |
-
# else:
|
| 408 |
-
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 409 |
-
# except Exception as e:
|
| 410 |
-
# print(f"β οΈ Warning reading old Excel file: {e}")
|
| 411 |
-
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 412 |
-
|
| 413 |
-
# #df_combined = pd.concat([df_new, df_old], ignore_index=True).drop_duplicates(subset="Sample ID", keep="first")
|
| 414 |
-
# df_old.set_index("Sample ID", inplace=True)
|
| 415 |
-
# df_new.set_index("Sample ID", inplace=True)
|
| 416 |
-
|
| 417 |
-
# df_old.update(df_new) # <-- update matching rows in df_old with df_new content
|
| 418 |
-
|
| 419 |
-
# df_combined = df_old.reset_index()
|
| 420 |
-
|
| 421 |
-
# try:
|
| 422 |
-
# df_combined.to_excel(filename, index=False)
|
| 423 |
-
# except Exception as e:
|
| 424 |
-
# print(f"β Failed to write Excel file {filename}: {e}")
|
| 425 |
-
def save_to_excel(all_rows, summary_text, flag_text, filename, is_resume=False):
|
| 426 |
-
df_new = pd.DataFrame(all_rows, columns=[
|
| 427 |
-
"Sample ID", "Predicted Country", "Country Explanation",
|
| 428 |
-
"Predicted Sample Type", "Sample Type Explanation",
|
| 429 |
-
"Sources", "Time cost"
|
| 430 |
-
])
|
| 431 |
-
|
| 432 |
-
if is_resume and os.path.exists(filename):
|
| 433 |
-
try:
|
| 434 |
-
df_old = pd.read_excel(filename)
|
| 435 |
-
except Exception as e:
|
| 436 |
-
print(f"β οΈ Warning reading old Excel file: {e}")
|
| 437 |
-
df_old = pd.DataFrame(columns=df_new.columns)
|
| 438 |
-
|
| 439 |
-
# Set index and update existing rows
|
| 440 |
-
df_old.set_index("Sample ID", inplace=True)
|
| 441 |
-
df_new.set_index("Sample ID", inplace=True)
|
| 442 |
-
df_old.update(df_new)
|
| 443 |
-
|
| 444 |
-
df_combined = df_old.reset_index()
|
| 445 |
-
else:
|
| 446 |
-
# If not resuming or file doesn't exist, just use new rows
|
| 447 |
-
df_combined = df_new
|
| 448 |
-
|
| 449 |
-
try:
|
| 450 |
-
df_combined.to_excel(filename, index=False)
|
| 451 |
-
except Exception as e:
|
| 452 |
-
print(f"β Failed to write Excel file {filename}: {e}")
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
# save the batch input in JSON file
|
| 456 |
-
def save_to_json(all_rows, summary_text, flag_text, filename):
|
| 457 |
-
output_dict = {
|
| 458 |
-
"Detailed_Results": all_rows#, # <-- make sure this is a plain list, not a DataFrame
|
| 459 |
-
# "Summary_Text": summary_text,
|
| 460 |
-
# "Ancient_Modern_Flag": flag_text
|
| 461 |
-
}
|
| 462 |
-
|
| 463 |
-
# If all_rows is a DataFrame, convert it
|
| 464 |
-
if isinstance(all_rows, pd.DataFrame):
|
| 465 |
-
output_dict["Detailed_Results"] = all_rows.to_dict(orient="records")
|
| 466 |
-
|
| 467 |
-
with open(filename, "w") as external_file:
|
| 468 |
-
json.dump(output_dict, external_file, indent=2)
|
| 469 |
-
|
| 470 |
-
# save the batch input in Text file
|
| 471 |
-
def save_to_txt(all_rows, summary_text, flag_text, filename):
|
| 472 |
-
if isinstance(all_rows, pd.DataFrame):
|
| 473 |
-
detailed_results = all_rows.to_dict(orient="records")
|
| 474 |
-
output = ""
|
| 475 |
-
#output += ",".join(list(detailed_results[0].keys())) + "\n\n"
|
| 476 |
-
output += ",".join([str(k) for k in detailed_results[0].keys()]) + "\n\n"
|
| 477 |
-
for r in detailed_results:
|
| 478 |
-
output += ",".join([str(v) for v in r.values()]) + "\n\n"
|
| 479 |
-
with open(filename, "w") as f:
|
| 480 |
-
f.write("=== Detailed Results ===\n")
|
| 481 |
-
f.write(output + "\n")
|
| 482 |
-
|
| 483 |
-
# f.write("\n=== Summary ===\n")
|
| 484 |
-
# f.write(summary_text + "\n")
|
| 485 |
-
|
| 486 |
-
# f.write("\n=== Ancient/Modern Flag ===\n")
|
| 487 |
-
# f.write(flag_text + "\n")
|
| 488 |
-
|
| 489 |
-
def save_batch_output(all_rows, output_type, summary_text=None, flag_text=None):
|
| 490 |
-
tmp_dir = tempfile.mkdtemp()
|
| 491 |
-
|
| 492 |
-
#html_table = all_rows.value # assuming this is stored somewhere
|
| 493 |
-
|
| 494 |
-
# Parse back to DataFrame
|
| 495 |
-
#all_rows = pd.read_html(all_rows)[0] # [0] because read_html returns a list
|
| 496 |
-
all_rows = pd.read_html(StringIO(all_rows))[0]
|
| 497 |
-
print(all_rows)
|
| 498 |
-
|
| 499 |
-
if output_type == "Excel":
|
| 500 |
-
file_path = f"{tmp_dir}/batch_output.xlsx"
|
| 501 |
-
save_to_excel(all_rows, summary_text, flag_text, file_path)
|
| 502 |
-
elif output_type == "JSON":
|
| 503 |
-
file_path = f"{tmp_dir}/batch_output.json"
|
| 504 |
-
save_to_json(all_rows, summary_text, flag_text, file_path)
|
| 505 |
-
print("Done with JSON")
|
| 506 |
-
elif output_type == "TXT":
|
| 507 |
-
file_path = f"{tmp_dir}/batch_output.txt"
|
| 508 |
-
save_to_txt(all_rows, summary_text, flag_text, file_path)
|
| 509 |
-
else:
|
| 510 |
-
return gr.update(visible=False) # invalid option
|
| 511 |
-
|
| 512 |
-
return gr.update(value=file_path, visible=True)
|
| 513 |
-
# save cost by checking the known outputs
|
| 514 |
-
|
| 515 |
-
# def check_known_output(accession):
|
| 516 |
-
# if not os.path.exists(KNOWN_OUTPUT_PATH):
|
| 517 |
-
# return None
|
| 518 |
-
|
| 519 |
-
# try:
|
| 520 |
-
# df = pd.read_excel(KNOWN_OUTPUT_PATH)
|
| 521 |
-
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 522 |
-
# if match:
|
| 523 |
-
# accession = match.group(0)
|
| 524 |
-
|
| 525 |
-
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
|
| 526 |
-
# if not matched.empty:
|
| 527 |
-
# return matched.iloc[0].to_dict() # Return the cached row
|
| 528 |
-
# except Exception as e:
|
| 529 |
-
# print(f"β οΈ Failed to load known samples: {e}")
|
| 530 |
-
# return None
|
| 531 |
-
|
| 532 |
-
# def check_known_output(accession):
|
| 533 |
-
# try:
|
| 534 |
-
# # β
Load credentials from Hugging Face secret
|
| 535 |
-
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 536 |
-
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 537 |
-
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 538 |
-
# client = gspread.authorize(creds)
|
| 539 |
-
|
| 540 |
-
# # β
Open the known_samples sheet
|
| 541 |
-
# spreadsheet = client.open("known_samples") # Replace with your sheet name
|
| 542 |
-
# sheet = spreadsheet.sheet1
|
| 543 |
-
|
| 544 |
-
# # β
Read all rows
|
| 545 |
-
# data = sheet.get_all_values()
|
| 546 |
-
# if not data:
|
| 547 |
-
# return None
|
| 548 |
-
|
| 549 |
-
# df = pd.DataFrame(data[1:], columns=data[0]) # Skip header row
|
| 550 |
-
|
| 551 |
-
# # β
Normalize accession pattern
|
| 552 |
-
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 553 |
-
# if match:
|
| 554 |
-
# accession = match.group(0)
|
| 555 |
-
|
| 556 |
-
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
|
| 557 |
-
# if not matched.empty:
|
| 558 |
-
# return matched.iloc[0].to_dict()
|
| 559 |
-
|
| 560 |
-
# except Exception as e:
|
| 561 |
-
# print(f"β οΈ Failed to load known samples from Google Sheets: {e}")
|
| 562 |
-
# return None
|
| 563 |
-
def check_known_output(accession):
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
#
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
#
|
| 726 |
-
#
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
#
|
| 730 |
-
#
|
| 731 |
-
#
|
| 732 |
-
#
|
| 733 |
-
#
|
| 734 |
-
#
|
| 735 |
-
|
| 736 |
-
#
|
| 737 |
-
#
|
| 738 |
-
|
| 739 |
-
#
|
| 740 |
-
#
|
| 741 |
-
#
|
| 742 |
-
|
| 743 |
-
#
|
| 744 |
-
#
|
| 745 |
-
#
|
| 746 |
-
|
| 747 |
-
#
|
| 748 |
-
|
| 749 |
-
#
|
| 750 |
-
#
|
| 751 |
-
|
| 752 |
-
#
|
| 753 |
-
#
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
#
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
#
|
| 846 |
-
#
|
| 847 |
-
#
|
| 848 |
-
#
|
| 849 |
-
#
|
| 850 |
-
#
|
| 851 |
-
#
|
| 852 |
-
#
|
| 853 |
-
|
| 854 |
-
#
|
| 855 |
-
#
|
| 856 |
-
|
| 857 |
-
#
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
#
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 945 |
return all_rows, output_file_path, total_queries, "\n".join(progress_lines), warning
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from collections import Counter
|
| 3 |
+
import csv
|
| 4 |
+
import os
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
#import app
|
| 7 |
+
from mtdna_classifier import classify_sample_location
|
| 8 |
+
import data_preprocess, model, pipeline
|
| 9 |
+
import subprocess
|
| 10 |
+
import json
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import io
|
| 13 |
+
import re
|
| 14 |
+
import tempfile
|
| 15 |
+
import gspread
|
| 16 |
+
from oauth2client.service_account import ServiceAccountCredentials
|
| 17 |
+
from io import StringIO
|
| 18 |
+
import hashlib
|
| 19 |
+
import threading
|
| 20 |
+
|
| 21 |
+
# @lru_cache(maxsize=3600)
|
| 22 |
+
# def classify_sample_location_cached(accession):
|
| 23 |
+
# return classify_sample_location(accession)
|
| 24 |
+
|
| 25 |
+
#@lru_cache(maxsize=3600)
|
| 26 |
+
def pipeline_classify_sample_location_cached(accession,stop_flag=None, save_df=None):
|
| 27 |
+
print("inside pipeline_classify_sample_location_cached, and [accession] is ", [accession])
|
| 28 |
+
print("len of save df: ", len(save_df))
|
| 29 |
+
return pipeline.pipeline_with_gemini([accession],stop_flag=stop_flag, save_df=save_df)
|
| 30 |
+
|
| 31 |
+
# Count and suggest final location
|
| 32 |
+
# def compute_final_suggested_location(rows):
|
| 33 |
+
# candidates = [
|
| 34 |
+
# row.get("Predicted Location", "").strip()
|
| 35 |
+
# for row in rows
|
| 36 |
+
# if row.get("Predicted Location", "").strip().lower() not in ["", "sample id not found", "unknown"]
|
| 37 |
+
# ] + [
|
| 38 |
+
# row.get("Inferred Region", "").strip()
|
| 39 |
+
# for row in rows
|
| 40 |
+
# if row.get("Inferred Region", "").strip().lower() not in ["", "sample id not found", "unknown"]
|
| 41 |
+
# ]
|
| 42 |
+
|
| 43 |
+
# if not candidates:
|
| 44 |
+
# return Counter(), ("Unknown", 0)
|
| 45 |
+
# # Step 1: Combine into one string and split using regex to handle commas, line breaks, etc.
|
| 46 |
+
# tokens = []
|
| 47 |
+
# for item in candidates:
|
| 48 |
+
# # Split by comma, whitespace, and newlines
|
| 49 |
+
# parts = re.split(r'[\s,]+', item)
|
| 50 |
+
# tokens.extend(parts)
|
| 51 |
+
|
| 52 |
+
# # Step 2: Clean and normalize tokens
|
| 53 |
+
# tokens = [word.strip() for word in tokens if word.strip().isalpha()] # Keep only alphabetic tokens
|
| 54 |
+
|
| 55 |
+
# # Step 3: Count
|
| 56 |
+
# counts = Counter(tokens)
|
| 57 |
+
|
| 58 |
+
# # Step 4: Get most common
|
| 59 |
+
# top_location, count = counts.most_common(1)[0]
|
| 60 |
+
# return counts, (top_location, count)
|
| 61 |
+
|
| 62 |
+
# Store feedback (with required fields)
|
| 63 |
+
|
| 64 |
+
def store_feedback_to_google_sheets(accession, answer1, answer2, contact=""):
|
| 65 |
+
if not answer1.strip() or not answer2.strip():
|
| 66 |
+
return "β οΈ Please answer both questions before submitting."
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
# β
Step: Load credentials from Hugging Face secret
|
| 70 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 71 |
+
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
| 72 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 73 |
+
|
| 74 |
+
# Connect to Google Sheet
|
| 75 |
+
client = gspread.authorize(creds)
|
| 76 |
+
sheet = client.open("feedback_mtdna").sheet1 # make sure sheet name matches
|
| 77 |
+
|
| 78 |
+
# Append feedback
|
| 79 |
+
sheet.append_row([accession, answer1, answer2, contact])
|
| 80 |
+
return "β
Feedback submitted. Thank you!"
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
return f"β Error submitting feedback: {e}"
|
| 84 |
+
|
| 85 |
+
import re
|
| 86 |
+
|
| 87 |
+
ACCESSION_REGEX = re.compile(r'^[A-Z]{1,4}_?\d{6}(\.\d+)?$')
|
| 88 |
+
|
| 89 |
+
def is_valid_accession(acc):
|
| 90 |
+
return bool(ACCESSION_REGEX.match(acc))
|
| 91 |
+
|
| 92 |
+
# helper function to extract accessions
|
| 93 |
+
def extract_accessions_from_input(file=None, raw_text=""):
|
| 94 |
+
print(f"RAW TEXT RECEIVED: {raw_text}")
|
| 95 |
+
accessions, invalid_accessions = [], []
|
| 96 |
+
seen = set()
|
| 97 |
+
if file:
|
| 98 |
+
try:
|
| 99 |
+
if file.name.endswith(".csv"):
|
| 100 |
+
df = pd.read_csv(file)
|
| 101 |
+
elif file.name.endswith(".xlsx"):
|
| 102 |
+
df = pd.read_excel(file)
|
| 103 |
+
else:
|
| 104 |
+
return [], "Unsupported file format. Please upload CSV or Excel."
|
| 105 |
+
for acc in df.iloc[:, 0].dropna().astype(str).str.strip():
|
| 106 |
+
if acc not in seen:
|
| 107 |
+
if is_valid_accession(acc):
|
| 108 |
+
accessions.append(acc)
|
| 109 |
+
seen.add(acc)
|
| 110 |
+
else:
|
| 111 |
+
invalid_accessions.append(acc)
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
return [],[], f"Failed to read file: {e}"
|
| 115 |
+
|
| 116 |
+
if raw_text:
|
| 117 |
+
try:
|
| 118 |
+
text_ids = [s.strip() for s in re.split(r"[\n,;\t]", raw_text) if s.strip()]
|
| 119 |
+
for acc in text_ids:
|
| 120 |
+
if acc not in seen:
|
| 121 |
+
if is_valid_accession(acc):
|
| 122 |
+
accessions.append(acc)
|
| 123 |
+
seen.add(acc)
|
| 124 |
+
else:
|
| 125 |
+
invalid_accessions.append(acc)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
return [],[], f"Failed to read file: {e}"
|
| 128 |
+
|
| 129 |
+
return list(accessions), list(invalid_accessions), None
|
| 130 |
+
# β
Add a new helper to backend: `filter_unprocessed_accessions()`
|
| 131 |
+
def get_incomplete_accessions(file_path):
|
| 132 |
+
df = pd.read_excel(file_path)
|
| 133 |
+
|
| 134 |
+
incomplete_accessions = []
|
| 135 |
+
for _, row in df.iterrows():
|
| 136 |
+
sample_id = str(row.get("Sample ID", "")).strip()
|
| 137 |
+
|
| 138 |
+
# Skip if no sample ID
|
| 139 |
+
if not sample_id:
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
# Drop the Sample ID and check if the rest is empty
|
| 143 |
+
other_cols = row.drop(labels=["Sample ID"], errors="ignore")
|
| 144 |
+
if other_cols.isna().all() or (other_cols.astype(str).str.strip() == "").all():
|
| 145 |
+
# Extract the accession number from the sample ID using regex
|
| 146 |
+
match = re.search(r"\b[A-Z]{2,4}\d{4,}", sample_id)
|
| 147 |
+
if match:
|
| 148 |
+
incomplete_accessions.append(match.group(0))
|
| 149 |
+
print(len(incomplete_accessions))
|
| 150 |
+
return incomplete_accessions
|
| 151 |
+
|
| 152 |
+
# GOOGLE_SHEET_NAME = "known_samples"
|
| 153 |
+
# USAGE_DRIVE_FILENAME = "user_usage_log.json"
|
| 154 |
+
|
| 155 |
+
def summarize_results(accession, stop_flag=None):
|
| 156 |
+
# Early bail
|
| 157 |
+
if stop_flag is not None and stop_flag.value:
|
| 158 |
+
print(f"π Skipping {accession} before starting.")
|
| 159 |
+
return []
|
| 160 |
+
# try cache first
|
| 161 |
+
cached = check_known_output(accession)
|
| 162 |
+
if cached:
|
| 163 |
+
print(f"β
Using cached result for {accession}")
|
| 164 |
+
return [[
|
| 165 |
+
cached["Sample ID"] or "unknown",
|
| 166 |
+
cached["Predicted Country"] or "unknown",
|
| 167 |
+
cached["Country Explanation"] or "unknown",
|
| 168 |
+
cached["Predicted Sample Type"] or "unknown",
|
| 169 |
+
cached["Sample Type Explanation"] or "unknown",
|
| 170 |
+
cached["Sources"] or "No Links",
|
| 171 |
+
cached["Time cost"]
|
| 172 |
+
]]
|
| 173 |
+
# only run when nothing in the cache
|
| 174 |
+
try:
|
| 175 |
+
print("try gemini pipeline: ",accession)
|
| 176 |
+
# β
Load credentials from Hugging Face secret
|
| 177 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 178 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 179 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 180 |
+
client = gspread.authorize(creds)
|
| 181 |
+
|
| 182 |
+
spreadsheet = client.open("known_samples")
|
| 183 |
+
sheet = spreadsheet.sheet1
|
| 184 |
+
|
| 185 |
+
data = sheet.get_all_values()
|
| 186 |
+
if not data:
|
| 187 |
+
print("β οΈ Google Sheet 'known_samples' is empty.")
|
| 188 |
+
return None
|
| 189 |
+
|
| 190 |
+
save_df = pd.DataFrame(data[1:], columns=data[0])
|
| 191 |
+
print("before pipeline, len of save df: ", len(save_df))
|
| 192 |
+
outputs = pipeline_classify_sample_location_cached(accession, stop_flag, save_df)
|
| 193 |
+
if stop_flag is not None and stop_flag.value:
|
| 194 |
+
print(f"π Skipped {accession} mid-pipeline.")
|
| 195 |
+
return []
|
| 196 |
+
# outputs = {'KU131308': {'isolate':'BRU18',
|
| 197 |
+
# 'country': {'brunei': ['ncbi',
|
| 198 |
+
# 'rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
|
| 199 |
+
# 'sample_type': {'modern':
|
| 200 |
+
# ['rag_llm-The text mentions "BRU18 Brunei Borneo" in a table listing various samples, and it is not described as ancient or archaeological.']},
|
| 201 |
+
# 'query_cost': 9.754999999999999e-05,
|
| 202 |
+
# 'time_cost': '24.776 seconds',
|
| 203 |
+
# 'source': ['https://doi.org/10.1007/s00439-015-1620-z',
|
| 204 |
+
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM1_ESM.pdf',
|
| 205 |
+
# 'https://static-content.springer.com/esm/art%3A10.1007%2Fs00439-015-1620-z/MediaObjects/439_2015_1620_MOESM2_ESM.xls']}}
|
| 206 |
+
except Exception as e:
|
| 207 |
+
return []#, f"Error: {e}", f"Error: {e}", f"Error: {e}"
|
| 208 |
+
|
| 209 |
+
if accession not in outputs:
|
| 210 |
+
print("no accession in output ", accession)
|
| 211 |
+
return []#, "Accession not found in results.", "Accession not found in results.", "Accession not found in results."
|
| 212 |
+
|
| 213 |
+
row_score = []
|
| 214 |
+
rows = []
|
| 215 |
+
save_rows = []
|
| 216 |
+
for key in outputs:
|
| 217 |
+
pred_country, pred_sample, country_explanation, sample_explanation = "unknown","unknown","unknown","unknown"
|
| 218 |
+
for section, results in outputs[key].items():
|
| 219 |
+
if section == "country" or section =="sample_type":
|
| 220 |
+
pred_output = []#"\n".join(list(results.keys()))
|
| 221 |
+
output_explanation = ""
|
| 222 |
+
for result, content in results.items():
|
| 223 |
+
if len(result) == 0: result = "unknown"
|
| 224 |
+
if len(content) == 0: output_explanation = "unknown"
|
| 225 |
+
else:
|
| 226 |
+
output_explanation += 'Method: ' + "\nMethod: ".join(content) + "\n"
|
| 227 |
+
pred_output.append(result)
|
| 228 |
+
pred_output = "\n".join(pred_output)
|
| 229 |
+
if section == "country":
|
| 230 |
+
pred_country, country_explanation = pred_output, output_explanation
|
| 231 |
+
elif section == "sample_type":
|
| 232 |
+
pred_sample, sample_explanation = pred_output, output_explanation
|
| 233 |
+
if outputs[key]["isolate"].lower()!="unknown":
|
| 234 |
+
label = key + "(Isolate: " + outputs[key]["isolate"] + ")"
|
| 235 |
+
else: label = key
|
| 236 |
+
if len(outputs[key]["source"]) == 0: outputs[key]["source"] = ["No Links"]
|
| 237 |
+
row = {
|
| 238 |
+
"Sample ID": label or "unknown",
|
| 239 |
+
"Predicted Country": pred_country or "unknown",
|
| 240 |
+
"Country Explanation": country_explanation or "unknown",
|
| 241 |
+
"Predicted Sample Type":pred_sample or "unknown",
|
| 242 |
+
"Sample Type Explanation":sample_explanation or "unknown",
|
| 243 |
+
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
|
| 244 |
+
"Time cost": outputs[key]["time_cost"]
|
| 245 |
+
}
|
| 246 |
+
#row_score.append(row)
|
| 247 |
+
rows.append(list(row.values()))
|
| 248 |
+
|
| 249 |
+
save_row = {
|
| 250 |
+
"Sample ID": label or "unknown",
|
| 251 |
+
"Predicted Country": pred_country or "unknown",
|
| 252 |
+
"Country Explanation": country_explanation or "unknown",
|
| 253 |
+
"Predicted Sample Type":pred_sample or "unknown",
|
| 254 |
+
"Sample Type Explanation":sample_explanation or "unknown",
|
| 255 |
+
"Sources": "\n".join(outputs[key]["source"]) or "No Links",
|
| 256 |
+
"Query_cost": outputs[key]["query_cost"] or "",
|
| 257 |
+
"Time cost": outputs[key]["time_cost"] or "",
|
| 258 |
+
"file_chunk":outputs[key]["file_chunk"] or "",
|
| 259 |
+
"file_all_output":outputs[key]["file_all_output"] or ""
|
| 260 |
+
}
|
| 261 |
+
#row_score.append(row)
|
| 262 |
+
save_rows.append(list(save_row.values()))
|
| 263 |
+
|
| 264 |
+
# #location_counts, (final_location, count) = compute_final_suggested_location(row_score)
|
| 265 |
+
# summary_lines = [f"### π§ Location Summary:\n"]
|
| 266 |
+
# summary_lines += [f"- **{loc}**: {cnt} times" for loc, cnt in location_counts.items()]
|
| 267 |
+
# summary_lines.append(f"\n**Final Suggested Location:** πΊοΈ **{final_location}** (mentioned {count} times)")
|
| 268 |
+
# summary = "\n".join(summary_lines)
|
| 269 |
+
|
| 270 |
+
# save the new running sample to known excel file
|
| 271 |
+
# try:
|
| 272 |
+
# df_new = pd.DataFrame(save_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Query_cost","Time cost"])
|
| 273 |
+
# if os.path.exists(KNOWN_OUTPUT_PATH):
|
| 274 |
+
# df_old = pd.read_excel(KNOWN_OUTPUT_PATH)
|
| 275 |
+
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 276 |
+
# else:
|
| 277 |
+
# df_combined = df_new
|
| 278 |
+
# df_combined.to_excel(KNOWN_OUTPUT_PATH, index=False)
|
| 279 |
+
# except Exception as e:
|
| 280 |
+
# print(f"β οΈ Failed to save known output: {e}")
|
| 281 |
+
# try:
|
| 282 |
+
# df_new = pd.DataFrame(save_rows, columns=[
|
| 283 |
+
# "Sample ID", "Predicted Country", "Country Explanation",
|
| 284 |
+
# "Predicted Sample Type", "Sample Type Explanation",
|
| 285 |
+
# "Sources", "Query_cost", "Time cost"
|
| 286 |
+
# ])
|
| 287 |
+
|
| 288 |
+
# # β
Google Sheets API setup
|
| 289 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 290 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 291 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 292 |
+
# client = gspread.authorize(creds)
|
| 293 |
+
|
| 294 |
+
# # β
Open the known_samples sheet
|
| 295 |
+
# spreadsheet = client.open("known_samples") # Replace with your sheet name
|
| 296 |
+
# sheet = spreadsheet.sheet1
|
| 297 |
+
|
| 298 |
+
# # β
Read old data
|
| 299 |
+
# existing_data = sheet.get_all_values()
|
| 300 |
+
# if existing_data:
|
| 301 |
+
# df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 302 |
+
# else:
|
| 303 |
+
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 304 |
+
|
| 305 |
+
# # β
Combine and remove duplicates
|
| 306 |
+
# df_combined = pd.concat([df_old, df_new], ignore_index=True).drop_duplicates(subset="Sample ID")
|
| 307 |
+
|
| 308 |
+
# # β
Clear and write back
|
| 309 |
+
# sheet.clear()
|
| 310 |
+
# sheet.update([df_combined.columns.values.tolist()] + df_combined.values.tolist())
|
| 311 |
+
|
| 312 |
+
# except Exception as e:
|
| 313 |
+
# print(f"β οΈ Failed to save known output to Google Sheets: {e}")
|
| 314 |
+
try:
|
| 315 |
+
# Prepare as DataFrame
|
| 316 |
+
df_new = pd.DataFrame(save_rows, columns=[
|
| 317 |
+
"Sample ID", "Predicted Country", "Country Explanation",
|
| 318 |
+
"Predicted Sample Type", "Sample Type Explanation",
|
| 319 |
+
"Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
|
| 320 |
+
])
|
| 321 |
+
|
| 322 |
+
# β
Setup Google Sheets
|
| 323 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 324 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 325 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 326 |
+
client = gspread.authorize(creds)
|
| 327 |
+
spreadsheet = client.open("known_samples")
|
| 328 |
+
sheet = spreadsheet.sheet1
|
| 329 |
+
|
| 330 |
+
# β
Read existing data
|
| 331 |
+
existing_data = sheet.get_all_values()
|
| 332 |
+
|
| 333 |
+
if existing_data:
|
| 334 |
+
df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 335 |
+
|
| 336 |
+
else:
|
| 337 |
+
|
| 338 |
+
df_old = pd.DataFrame(columns=[
|
| 339 |
+
"Sample ID", "Actual_country", "Actual_sample_type", "Country Explanation",
|
| 340 |
+
"Match_country", "Match_sample_type", "Predicted Country", "Predicted Sample Type",
|
| 341 |
+
"Query_cost", "Sample Type Explanation", "Sources", "Time cost", "file_chunk", "file_all_output"
|
| 342 |
+
])
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
# β
Index by Sample ID
|
| 346 |
+
df_old.set_index("Sample ID", inplace=True)
|
| 347 |
+
df_new.set_index("Sample ID", inplace=True)
|
| 348 |
+
|
| 349 |
+
# β
Update only matching fields
|
| 350 |
+
update_columns = [
|
| 351 |
+
"Predicted Country", "Predicted Sample Type", "Country Explanation",
|
| 352 |
+
"Sample Type Explanation", "Sources", "Query_cost", "Time cost", "file_chunk", "file_all_output"
|
| 353 |
+
]
|
| 354 |
+
for idx, row in df_new.iterrows():
|
| 355 |
+
if idx not in df_old.index:
|
| 356 |
+
df_old.loc[idx] = "" # new row, fill empty first
|
| 357 |
+
for col in update_columns:
|
| 358 |
+
if pd.notna(row[col]) and row[col] != "":
|
| 359 |
+
df_old.at[idx, col] = row[col]
|
| 360 |
+
|
| 361 |
+
# β
Reset and write back
|
| 362 |
+
df_old.reset_index(inplace=True)
|
| 363 |
+
sheet.clear()
|
| 364 |
+
sheet.update([df_old.columns.values.tolist()] + df_old.values.tolist())
|
| 365 |
+
print("β
Match results saved to known_samples.")
|
| 366 |
+
|
| 367 |
+
except Exception as e:
|
| 368 |
+
print(f"β Failed to update known_samples: {e}")
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
return rows#, summary, labelAncient_Modern, explain_label
|
| 372 |
+
|
| 373 |
+
# save the batch input in excel file
|
| 374 |
+
# def save_to_excel(all_rows, summary_text, flag_text, filename):
|
| 375 |
+
# with pd.ExcelWriter(filename) as writer:
|
| 376 |
+
# # Save table
|
| 377 |
+
# df_new = pd.DataFrame(all_rows, columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
|
| 378 |
+
# df.to_excel(writer, sheet_name="Detailed Results", index=False)
|
| 379 |
+
# try:
|
| 380 |
+
# df_old = pd.read_excel(filename)
|
| 381 |
+
# except:
|
| 382 |
+
# df_old = pd.DataFrame([[]], columns=["Sample ID", "Predicted Country", "Country Explanation", "Predicted Sample Type", "Sample Type Explanation", "Sources", "Time cost"])
|
| 383 |
+
# df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 384 |
+
# # if os.path.exists(filename):
|
| 385 |
+
# # df_old = pd.read_excel(filename)
|
| 386 |
+
# # df_combined = pd.concat([df_old, df_new]).drop_duplicates(subset="Sample ID")
|
| 387 |
+
# # else:
|
| 388 |
+
# # df_combined = df_new
|
| 389 |
+
# df_combined.to_excel(filename, index=False)
|
| 390 |
+
# # # Save summary
|
| 391 |
+
# # summary_df = pd.DataFrame({"Summary": [summary_text]})
|
| 392 |
+
# # summary_df.to_excel(writer, sheet_name="Summary", index=False)
|
| 393 |
+
|
| 394 |
+
# # # Save flag
|
| 395 |
+
# # flag_df = pd.DataFrame({"Flag": [flag_text]})
|
| 396 |
+
# # flag_df.to_excel(writer, sheet_name="Ancient_Modern_Flag", index=False)
|
| 397 |
+
# def save_to_excel(all_rows, summary_text, flag_text, filename):
|
| 398 |
+
# df_new = pd.DataFrame(all_rows, columns=[
|
| 399 |
+
# "Sample ID", "Predicted Country", "Country Explanation",
|
| 400 |
+
# "Predicted Sample Type", "Sample Type Explanation",
|
| 401 |
+
# "Sources", "Time cost"
|
| 402 |
+
# ])
|
| 403 |
+
|
| 404 |
+
# try:
|
| 405 |
+
# if os.path.exists(filename):
|
| 406 |
+
# df_old = pd.read_excel(filename)
|
| 407 |
+
# else:
|
| 408 |
+
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 409 |
+
# except Exception as e:
|
| 410 |
+
# print(f"β οΈ Warning reading old Excel file: {e}")
|
| 411 |
+
# df_old = pd.DataFrame(columns=df_new.columns)
|
| 412 |
+
|
| 413 |
+
# #df_combined = pd.concat([df_new, df_old], ignore_index=True).drop_duplicates(subset="Sample ID", keep="first")
|
| 414 |
+
# df_old.set_index("Sample ID", inplace=True)
|
| 415 |
+
# df_new.set_index("Sample ID", inplace=True)
|
| 416 |
+
|
| 417 |
+
# df_old.update(df_new) # <-- update matching rows in df_old with df_new content
|
| 418 |
+
|
| 419 |
+
# df_combined = df_old.reset_index()
|
| 420 |
+
|
| 421 |
+
# try:
|
| 422 |
+
# df_combined.to_excel(filename, index=False)
|
| 423 |
+
# except Exception as e:
|
| 424 |
+
# print(f"β Failed to write Excel file {filename}: {e}")
|
| 425 |
+
def save_to_excel(all_rows, summary_text, flag_text, filename, is_resume=False):
|
| 426 |
+
df_new = pd.DataFrame(all_rows, columns=[
|
| 427 |
+
"Sample ID", "Predicted Country", "Country Explanation",
|
| 428 |
+
"Predicted Sample Type", "Sample Type Explanation",
|
| 429 |
+
"Sources", "Time cost"
|
| 430 |
+
])
|
| 431 |
+
|
| 432 |
+
if is_resume and os.path.exists(filename):
|
| 433 |
+
try:
|
| 434 |
+
df_old = pd.read_excel(filename)
|
| 435 |
+
except Exception as e:
|
| 436 |
+
print(f"β οΈ Warning reading old Excel file: {e}")
|
| 437 |
+
df_old = pd.DataFrame(columns=df_new.columns)
|
| 438 |
+
|
| 439 |
+
# Set index and update existing rows
|
| 440 |
+
df_old.set_index("Sample ID", inplace=True)
|
| 441 |
+
df_new.set_index("Sample ID", inplace=True)
|
| 442 |
+
df_old.update(df_new)
|
| 443 |
+
|
| 444 |
+
df_combined = df_old.reset_index()
|
| 445 |
+
else:
|
| 446 |
+
# If not resuming or file doesn't exist, just use new rows
|
| 447 |
+
df_combined = df_new
|
| 448 |
+
|
| 449 |
+
try:
|
| 450 |
+
df_combined.to_excel(filename, index=False)
|
| 451 |
+
except Exception as e:
|
| 452 |
+
print(f"β Failed to write Excel file {filename}: {e}")
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
# save the batch input in JSON file
|
| 456 |
+
def save_to_json(all_rows, summary_text, flag_text, filename):
|
| 457 |
+
output_dict = {
|
| 458 |
+
"Detailed_Results": all_rows#, # <-- make sure this is a plain list, not a DataFrame
|
| 459 |
+
# "Summary_Text": summary_text,
|
| 460 |
+
# "Ancient_Modern_Flag": flag_text
|
| 461 |
+
}
|
| 462 |
+
|
| 463 |
+
# If all_rows is a DataFrame, convert it
|
| 464 |
+
if isinstance(all_rows, pd.DataFrame):
|
| 465 |
+
output_dict["Detailed_Results"] = all_rows.to_dict(orient="records")
|
| 466 |
+
|
| 467 |
+
with open(filename, "w") as external_file:
|
| 468 |
+
json.dump(output_dict, external_file, indent=2)
|
| 469 |
+
|
| 470 |
+
# save the batch input in Text file
|
| 471 |
+
def save_to_txt(all_rows, summary_text, flag_text, filename):
|
| 472 |
+
if isinstance(all_rows, pd.DataFrame):
|
| 473 |
+
detailed_results = all_rows.to_dict(orient="records")
|
| 474 |
+
output = ""
|
| 475 |
+
#output += ",".join(list(detailed_results[0].keys())) + "\n\n"
|
| 476 |
+
output += ",".join([str(k) for k in detailed_results[0].keys()]) + "\n\n"
|
| 477 |
+
for r in detailed_results:
|
| 478 |
+
output += ",".join([str(v) for v in r.values()]) + "\n\n"
|
| 479 |
+
with open(filename, "w") as f:
|
| 480 |
+
f.write("=== Detailed Results ===\n")
|
| 481 |
+
f.write(output + "\n")
|
| 482 |
+
|
| 483 |
+
# f.write("\n=== Summary ===\n")
|
| 484 |
+
# f.write(summary_text + "\n")
|
| 485 |
+
|
| 486 |
+
# f.write("\n=== Ancient/Modern Flag ===\n")
|
| 487 |
+
# f.write(flag_text + "\n")
|
| 488 |
+
|
| 489 |
+
def save_batch_output(all_rows, output_type, summary_text=None, flag_text=None):
|
| 490 |
+
tmp_dir = tempfile.mkdtemp()
|
| 491 |
+
|
| 492 |
+
#html_table = all_rows.value # assuming this is stored somewhere
|
| 493 |
+
|
| 494 |
+
# Parse back to DataFrame
|
| 495 |
+
#all_rows = pd.read_html(all_rows)[0] # [0] because read_html returns a list
|
| 496 |
+
all_rows = pd.read_html(StringIO(all_rows))[0]
|
| 497 |
+
print(all_rows)
|
| 498 |
+
|
| 499 |
+
if output_type == "Excel":
|
| 500 |
+
file_path = f"{tmp_dir}/batch_output.xlsx"
|
| 501 |
+
save_to_excel(all_rows, summary_text, flag_text, file_path)
|
| 502 |
+
elif output_type == "JSON":
|
| 503 |
+
file_path = f"{tmp_dir}/batch_output.json"
|
| 504 |
+
save_to_json(all_rows, summary_text, flag_text, file_path)
|
| 505 |
+
print("Done with JSON")
|
| 506 |
+
elif output_type == "TXT":
|
| 507 |
+
file_path = f"{tmp_dir}/batch_output.txt"
|
| 508 |
+
save_to_txt(all_rows, summary_text, flag_text, file_path)
|
| 509 |
+
else:
|
| 510 |
+
return gr.update(visible=False) # invalid option
|
| 511 |
+
|
| 512 |
+
return gr.update(value=file_path, visible=True)
|
| 513 |
+
# save cost by checking the known outputs
|
| 514 |
+
|
| 515 |
+
# def check_known_output(accession):
|
| 516 |
+
# if not os.path.exists(KNOWN_OUTPUT_PATH):
|
| 517 |
+
# return None
|
| 518 |
+
|
| 519 |
+
# try:
|
| 520 |
+
# df = pd.read_excel(KNOWN_OUTPUT_PATH)
|
| 521 |
+
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 522 |
+
# if match:
|
| 523 |
+
# accession = match.group(0)
|
| 524 |
+
|
| 525 |
+
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
|
| 526 |
+
# if not matched.empty:
|
| 527 |
+
# return matched.iloc[0].to_dict() # Return the cached row
|
| 528 |
+
# except Exception as e:
|
| 529 |
+
# print(f"β οΈ Failed to load known samples: {e}")
|
| 530 |
+
# return None
|
| 531 |
+
|
| 532 |
+
# def check_known_output(accession):
|
| 533 |
+
# try:
|
| 534 |
+
# # β
Load credentials from Hugging Face secret
|
| 535 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 536 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 537 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 538 |
+
# client = gspread.authorize(creds)
|
| 539 |
+
|
| 540 |
+
# # β
Open the known_samples sheet
|
| 541 |
+
# spreadsheet = client.open("known_samples") # Replace with your sheet name
|
| 542 |
+
# sheet = spreadsheet.sheet1
|
| 543 |
+
|
| 544 |
+
# # β
Read all rows
|
| 545 |
+
# data = sheet.get_all_values()
|
| 546 |
+
# if not data:
|
| 547 |
+
# return None
|
| 548 |
+
|
| 549 |
+
# df = pd.DataFrame(data[1:], columns=data[0]) # Skip header row
|
| 550 |
+
|
| 551 |
+
# # β
Normalize accession pattern
|
| 552 |
+
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 553 |
+
# if match:
|
| 554 |
+
# accession = match.group(0)
|
| 555 |
+
|
| 556 |
+
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
|
| 557 |
+
# if not matched.empty:
|
| 558 |
+
# return matched.iloc[0].to_dict()
|
| 559 |
+
|
| 560 |
+
# except Exception as e:
|
| 561 |
+
# print(f"β οΈ Failed to load known samples from Google Sheets: {e}")
|
| 562 |
+
# return None
|
| 563 |
+
# def check_known_output(accession):
|
| 564 |
+
# print("inside check known output function")
|
| 565 |
+
# try:
|
| 566 |
+
# # β
Load credentials from Hugging Face secret
|
| 567 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 568 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 569 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 570 |
+
# client = gspread.authorize(creds)
|
| 571 |
+
|
| 572 |
+
# spreadsheet = client.open("known_samples")
|
| 573 |
+
# sheet = spreadsheet.sheet1
|
| 574 |
+
|
| 575 |
+
# data = sheet.get_all_values()
|
| 576 |
+
# if not data:
|
| 577 |
+
# print("β οΈ Google Sheet 'known_samples' is empty.")
|
| 578 |
+
# return None
|
| 579 |
+
|
| 580 |
+
# df = pd.DataFrame(data[1:], columns=data[0])
|
| 581 |
+
# if "Sample ID" not in df.columns:
|
| 582 |
+
# print("β Column 'Sample ID' not found in Google Sheet.")
|
| 583 |
+
# return None
|
| 584 |
+
|
| 585 |
+
# match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 586 |
+
# if match:
|
| 587 |
+
# accession = match.group(0)
|
| 588 |
+
|
| 589 |
+
# matched = df[df["Sample ID"].str.contains(accession, case=False, na=False)]
|
| 590 |
+
# if not matched.empty:
|
| 591 |
+
# #return matched.iloc[0].to_dict()
|
| 592 |
+
# row = matched.iloc[0]
|
| 593 |
+
# country = row.get("Predicted Country", "").strip().lower()
|
| 594 |
+
# sample_type = row.get("Predicted Sample Type", "").strip().lower()
|
| 595 |
+
|
| 596 |
+
# if country and country != "unknown" and sample_type and sample_type != "unknown":
|
| 597 |
+
# return row.to_dict()
|
| 598 |
+
# else:
|
| 599 |
+
# print(f"β οΈ Accession {accession} found but country/sample_type is unknown or empty.")
|
| 600 |
+
# return None
|
| 601 |
+
# else:
|
| 602 |
+
# print(f"π Accession {accession} not found in known_samples.")
|
| 603 |
+
# return None
|
| 604 |
+
|
| 605 |
+
# except Exception as e:
|
| 606 |
+
# import traceback
|
| 607 |
+
# print("β Exception occurred during check_known_output:")
|
| 608 |
+
# traceback.print_exc()
|
| 609 |
+
# return None
|
| 610 |
+
|
| 611 |
+
import os
|
| 612 |
+
import re
|
| 613 |
+
import json
|
| 614 |
+
import time
|
| 615 |
+
import gspread
|
| 616 |
+
import pandas as pd
|
| 617 |
+
from oauth2client.service_account import ServiceAccountCredentials
|
| 618 |
+
from gspread.exceptions import APIError
|
| 619 |
+
|
| 620 |
+
# --- Global cache ---
|
| 621 |
+
_known_samples_cache = None
|
| 622 |
+
|
| 623 |
+
def load_known_samples():
|
| 624 |
+
"""Load the Google Sheet 'known_samples' into a Pandas DataFrame and cache it."""
|
| 625 |
+
global _known_samples_cache
|
| 626 |
+
try:
|
| 627 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 628 |
+
scope = [
|
| 629 |
+
'https://spreadsheets.google.com/feeds',
|
| 630 |
+
'https://www.googleapis.com/auth/drive'
|
| 631 |
+
]
|
| 632 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 633 |
+
client = gspread.authorize(creds)
|
| 634 |
+
|
| 635 |
+
sheet = client.open("known_samples").sheet1
|
| 636 |
+
data = sheet.get_all_values()
|
| 637 |
+
|
| 638 |
+
if not data:
|
| 639 |
+
print("β οΈ Google Sheet 'known_samples' is empty.")
|
| 640 |
+
_known_samples_cache = pd.DataFrame()
|
| 641 |
+
else:
|
| 642 |
+
_known_samples_cache = pd.DataFrame(data[1:], columns=data[0])
|
| 643 |
+
print(f"β
Cached {_known_samples_cache.shape[0]} rows from known_samples")
|
| 644 |
+
|
| 645 |
+
except APIError as e:
|
| 646 |
+
print(f"β APIError while loading known_samples: {e}")
|
| 647 |
+
_known_samples_cache = pd.DataFrame()
|
| 648 |
+
except Exception as e:
|
| 649 |
+
import traceback
|
| 650 |
+
print("β Exception occurred while loading known_samples:")
|
| 651 |
+
traceback.print_exc()
|
| 652 |
+
_known_samples_cache = pd.DataFrame()
|
| 653 |
+
|
| 654 |
+
def check_known_output(accession):
|
| 655 |
+
"""Check if an accession exists in the cached 'known_samples' sheet."""
|
| 656 |
+
global _known_samples_cache
|
| 657 |
+
print("inside check known output function")
|
| 658 |
+
|
| 659 |
+
try:
|
| 660 |
+
# Load cache if not already loaded
|
| 661 |
+
if _known_samples_cache is None:
|
| 662 |
+
load_known_samples()
|
| 663 |
+
|
| 664 |
+
if _known_samples_cache.empty:
|
| 665 |
+
print("β οΈ No cached data available.")
|
| 666 |
+
return None
|
| 667 |
+
|
| 668 |
+
# Extract proper accession format (e.g. AB12345)
|
| 669 |
+
match = re.search(r"\b[A-Z]{2,4}\d{4,}", accession)
|
| 670 |
+
if match:
|
| 671 |
+
accession = match.group(0)
|
| 672 |
+
|
| 673 |
+
matched = _known_samples_cache[
|
| 674 |
+
_known_samples_cache["Sample ID"].str.contains(accession, case=False, na=False)
|
| 675 |
+
]
|
| 676 |
+
|
| 677 |
+
if not matched.empty:
|
| 678 |
+
row = matched.iloc[0]
|
| 679 |
+
country = row.get("Predicted Country", "").strip().lower()
|
| 680 |
+
sample_type = row.get("Predicted Sample Type", "").strip().lower()
|
| 681 |
+
|
| 682 |
+
if country and country != "unknown" and sample_type and sample_type != "unknown":
|
| 683 |
+
print(f"π― Found {accession} in cache")
|
| 684 |
+
return row.to_dict()
|
| 685 |
+
else:
|
| 686 |
+
print(f"β οΈ Accession {accession} found but country/sample_type unknown or empty.")
|
| 687 |
+
return None
|
| 688 |
+
else:
|
| 689 |
+
print(f"π Accession {accession} not found in cache.")
|
| 690 |
+
return None
|
| 691 |
+
|
| 692 |
+
except Exception as e:
|
| 693 |
+
import traceback
|
| 694 |
+
print("β Exception occurred during check_known_output:")
|
| 695 |
+
traceback.print_exc()
|
| 696 |
+
return None
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
def hash_user_id(user_input):
|
| 701 |
+
return hashlib.sha256(user_input.encode()).hexdigest()
|
| 702 |
+
|
| 703 |
+
# β
Load and save usage count
|
| 704 |
+
|
| 705 |
+
# def load_user_usage():
|
| 706 |
+
# if not os.path.exists(USER_USAGE_TRACK_FILE):
|
| 707 |
+
# return {}
|
| 708 |
+
|
| 709 |
+
# try:
|
| 710 |
+
# with open(USER_USAGE_TRACK_FILE, "r") as f:
|
| 711 |
+
# content = f.read().strip()
|
| 712 |
+
# if not content:
|
| 713 |
+
# return {} # file is empty
|
| 714 |
+
# return json.loads(content)
|
| 715 |
+
# except (json.JSONDecodeError, ValueError):
|
| 716 |
+
# print("β οΈ Warning: user_usage.json is corrupted or invalid. Resetting.")
|
| 717 |
+
# return {} # fallback to empty dict
|
| 718 |
+
# def load_user_usage():
|
| 719 |
+
# try:
|
| 720 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 721 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 722 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 723 |
+
# client = gspread.authorize(creds)
|
| 724 |
+
|
| 725 |
+
# sheet = client.open("user_usage_log").sheet1
|
| 726 |
+
# data = sheet.get_all_records() # Assumes columns: email, usage_count
|
| 727 |
+
|
| 728 |
+
# usage = {}
|
| 729 |
+
# for row in data:
|
| 730 |
+
# email = row.get("email", "").strip().lower()
|
| 731 |
+
# count = int(row.get("usage_count", 0))
|
| 732 |
+
# if email:
|
| 733 |
+
# usage[email] = count
|
| 734 |
+
# return usage
|
| 735 |
+
# except Exception as e:
|
| 736 |
+
# print(f"β οΈ Failed to load user usage from Google Sheets: {e}")
|
| 737 |
+
# return {}
|
| 738 |
+
# def load_user_usage():
|
| 739 |
+
# try:
|
| 740 |
+
# parent_id = pipeline.get_or_create_drive_folder("mtDNA-Location-Classifier")
|
| 741 |
+
# iterate3_id = pipeline.get_or_create_drive_folder("iterate3", parent_id=parent_id)
|
| 742 |
+
|
| 743 |
+
# found = pipeline.find_drive_file("user_usage_log.json", parent_id=iterate3_id)
|
| 744 |
+
# if not found:
|
| 745 |
+
# return {} # not found, start fresh
|
| 746 |
+
|
| 747 |
+
# #file_id = found[0]["id"]
|
| 748 |
+
# file_id = found
|
| 749 |
+
# content = pipeline.download_drive_file_content(file_id)
|
| 750 |
+
# return json.loads(content.strip()) if content.strip() else {}
|
| 751 |
+
|
| 752 |
+
# except Exception as e:
|
| 753 |
+
# print(f"β οΈ Failed to load user_usage_log.json from Google Drive: {e}")
|
| 754 |
+
# return {}
|
| 755 |
+
def load_user_usage():
|
| 756 |
+
try:
|
| 757 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 758 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 759 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 760 |
+
client = gspread.authorize(creds)
|
| 761 |
+
|
| 762 |
+
sheet = client.open("user_usage_log").sheet1
|
| 763 |
+
data = sheet.get_all_values()
|
| 764 |
+
print("data: ", data)
|
| 765 |
+
print("π§ͺ Raw header row from sheet:", data[0])
|
| 766 |
+
print("π§ͺ Character codes in each header:")
|
| 767 |
+
for h in data[0]:
|
| 768 |
+
print([ord(c) for c in h])
|
| 769 |
+
|
| 770 |
+
if not data or len(data) < 2:
|
| 771 |
+
print("β οΈ Sheet is empty or missing rows.")
|
| 772 |
+
return {}
|
| 773 |
+
|
| 774 |
+
headers = [h.strip().lower() for h in data[0]]
|
| 775 |
+
if "email" not in headers or "usage_count" not in headers:
|
| 776 |
+
print("β Header format incorrect. Must have 'email' and 'usage_count'.")
|
| 777 |
+
return {}
|
| 778 |
+
|
| 779 |
+
permitted_index = headers.index("permitted_samples") if "permitted_samples" in headers else None
|
| 780 |
+
df = pd.DataFrame(data[1:], columns=headers)
|
| 781 |
+
|
| 782 |
+
usage = {}
|
| 783 |
+
permitted = {}
|
| 784 |
+
for _, row in df.iterrows():
|
| 785 |
+
email = row.get("email", "").strip().lower()
|
| 786 |
+
try:
|
| 787 |
+
#count = int(row.get("usage_count", 0))
|
| 788 |
+
try:
|
| 789 |
+
count = int(float(row.get("usage_count", 0)))
|
| 790 |
+
except Exception:
|
| 791 |
+
print(f"β οΈ Invalid usage_count for {email}: {row.get('usage_count')}")
|
| 792 |
+
count = 0
|
| 793 |
+
|
| 794 |
+
if email:
|
| 795 |
+
usage[email] = count
|
| 796 |
+
if permitted_index is not None:
|
| 797 |
+
try:
|
| 798 |
+
permitted_count = int(float(row.get("permitted_samples", 50)))
|
| 799 |
+
permitted[email] = permitted_count
|
| 800 |
+
except:
|
| 801 |
+
permitted[email] = 50
|
| 802 |
+
|
| 803 |
+
except ValueError:
|
| 804 |
+
print(f"β οΈ Invalid usage_count for {email}: {row.get('usage_count')}")
|
| 805 |
+
return usage, permitted
|
| 806 |
+
|
| 807 |
+
except Exception as e:
|
| 808 |
+
print(f"β Error in load_user_usage: {e}")
|
| 809 |
+
return {}, {}
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
# def save_user_usage(usage):
|
| 814 |
+
# with open(USER_USAGE_TRACK_FILE, "w") as f:
|
| 815 |
+
# json.dump(usage, f, indent=2)
|
| 816 |
+
|
| 817 |
+
# def save_user_usage(usage_dict):
|
| 818 |
+
# try:
|
| 819 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 820 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 821 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 822 |
+
# client = gspread.authorize(creds)
|
| 823 |
+
|
| 824 |
+
# sheet = client.open("user_usage_log").sheet1
|
| 825 |
+
# sheet.clear() # clear old contents first
|
| 826 |
+
|
| 827 |
+
# # Write header + rows
|
| 828 |
+
# rows = [["email", "usage_count"]] + [[email, count] for email, count in usage_dict.items()]
|
| 829 |
+
# sheet.update(rows)
|
| 830 |
+
# except Exception as e:
|
| 831 |
+
# print(f"β Failed to save user usage to Google Sheets: {e}")
|
| 832 |
+
# def save_user_usage(usage_dict):
|
| 833 |
+
# try:
|
| 834 |
+
# parent_id = pipeline.get_or_create_drive_folder("mtDNA-Location-Classifier")
|
| 835 |
+
# iterate3_id = pipeline.get_or_create_drive_folder("iterate3", parent_id=parent_id)
|
| 836 |
+
|
| 837 |
+
# import tempfile
|
| 838 |
+
# tmp_path = os.path.join(tempfile.gettempdir(), "user_usage_log.json")
|
| 839 |
+
# print("πΎ Saving this usage dict:", usage_dict)
|
| 840 |
+
# with open(tmp_path, "w") as f:
|
| 841 |
+
# json.dump(usage_dict, f, indent=2)
|
| 842 |
+
|
| 843 |
+
# pipeline.upload_file_to_drive(tmp_path, "user_usage_log.json", iterate3_id)
|
| 844 |
+
|
| 845 |
+
# except Exception as e:
|
| 846 |
+
# print(f"β Failed to save user_usage_log.json to Google Drive: {e}")
|
| 847 |
+
# def save_user_usage(usage_dict):
|
| 848 |
+
# try:
|
| 849 |
+
# creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 850 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 851 |
+
# creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 852 |
+
# client = gspread.authorize(creds)
|
| 853 |
+
|
| 854 |
+
# spreadsheet = client.open("user_usage_log")
|
| 855 |
+
# sheet = spreadsheet.sheet1
|
| 856 |
+
|
| 857 |
+
# # Step 1: Convert new usage to DataFrame
|
| 858 |
+
# df_new = pd.DataFrame(list(usage_dict.items()), columns=["email", "usage_count"])
|
| 859 |
+
# df_new["email"] = df_new["email"].str.strip().str.lower()
|
| 860 |
+
|
| 861 |
+
# # Step 2: Load existing data
|
| 862 |
+
# existing_data = sheet.get_all_values()
|
| 863 |
+
# print("π§ͺ Sheet existing_data:", existing_data)
|
| 864 |
+
|
| 865 |
+
# # Try to load old data
|
| 866 |
+
# if existing_data and len(existing_data[0]) >= 1:
|
| 867 |
+
# df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 868 |
+
|
| 869 |
+
# # Fix missing columns
|
| 870 |
+
# if "email" not in df_old.columns:
|
| 871 |
+
# df_old["email"] = ""
|
| 872 |
+
# if "usage_count" not in df_old.columns:
|
| 873 |
+
# df_old["usage_count"] = 0
|
| 874 |
+
|
| 875 |
+
# df_old["email"] = df_old["email"].str.strip().str.lower()
|
| 876 |
+
# df_old["usage_count"] = pd.to_numeric(df_old["usage_count"], errors="coerce").fillna(0).astype(int)
|
| 877 |
+
# else:
|
| 878 |
+
# df_old = pd.DataFrame(columns=["email", "usage_count"])
|
| 879 |
+
|
| 880 |
+
# # Step 3: Merge
|
| 881 |
+
# df_combined = pd.concat([df_old, df_new], ignore_index=True)
|
| 882 |
+
# df_combined = df_combined.groupby("email", as_index=False).sum()
|
| 883 |
+
|
| 884 |
+
# # Step 4: Write back
|
| 885 |
+
# sheet.clear()
|
| 886 |
+
# sheet.update([df_combined.columns.tolist()] + df_combined.astype(str).values.tolist())
|
| 887 |
+
# print("β
Saved user usage to user_usage_log sheet.")
|
| 888 |
+
|
| 889 |
+
# except Exception as e:
|
| 890 |
+
# print(f"β Failed to save user usage to Google Sheets: {e}")
|
| 891 |
+
def save_user_usage(usage_dict):
|
| 892 |
+
try:
|
| 893 |
+
creds_dict = json.loads(os.environ["GCP_CREDS_JSON"])
|
| 894 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
| 895 |
+
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
|
| 896 |
+
client = gspread.authorize(creds)
|
| 897 |
+
|
| 898 |
+
spreadsheet = client.open("user_usage_log")
|
| 899 |
+
sheet = spreadsheet.sheet1
|
| 900 |
+
|
| 901 |
+
# Build new df
|
| 902 |
+
df_new = pd.DataFrame(list(usage_dict.items()), columns=["email", "usage_count"])
|
| 903 |
+
df_new["email"] = df_new["email"].str.strip().str.lower()
|
| 904 |
+
df_new["usage_count"] = pd.to_numeric(df_new["usage_count"], errors="coerce").fillna(0).astype(int)
|
| 905 |
+
|
| 906 |
+
# Read existing data
|
| 907 |
+
existing_data = sheet.get_all_values()
|
| 908 |
+
if existing_data and len(existing_data[0]) >= 2:
|
| 909 |
+
df_old = pd.DataFrame(existing_data[1:], columns=existing_data[0])
|
| 910 |
+
df_old["email"] = df_old["email"].str.strip().str.lower()
|
| 911 |
+
df_old["usage_count"] = pd.to_numeric(df_old["usage_count"], errors="coerce").fillna(0).astype(int)
|
| 912 |
+
else:
|
| 913 |
+
df_old = pd.DataFrame(columns=["email", "usage_count"])
|
| 914 |
+
|
| 915 |
+
# β
Overwrite specific emails only
|
| 916 |
+
df_old = df_old.set_index("email")
|
| 917 |
+
for email, count in usage_dict.items():
|
| 918 |
+
email = email.strip().lower()
|
| 919 |
+
df_old.loc[email, "usage_count"] = count
|
| 920 |
+
df_old = df_old.reset_index()
|
| 921 |
+
|
| 922 |
+
# Save
|
| 923 |
+
sheet.clear()
|
| 924 |
+
sheet.update([df_old.columns.tolist()] + df_old.astype(str).values.tolist())
|
| 925 |
+
print("β
Saved user usage to user_usage_log sheet.")
|
| 926 |
+
|
| 927 |
+
except Exception as e:
|
| 928 |
+
print(f"β Failed to save user usage to Google Sheets: {e}")
|
| 929 |
+
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
# def increment_usage(user_id, num_samples=1):
|
| 934 |
+
# usage = load_user_usage()
|
| 935 |
+
# if user_id not in usage:
|
| 936 |
+
# usage[user_id] = 0
|
| 937 |
+
# usage[user_id] += num_samples
|
| 938 |
+
# save_user_usage(usage)
|
| 939 |
+
# return usage[user_id]
|
| 940 |
+
# def increment_usage(email: str, count: int):
|
| 941 |
+
# usage = load_user_usage()
|
| 942 |
+
# email_key = email.strip().lower()
|
| 943 |
+
# usage[email_key] = usage.get(email_key, 0) + count
|
| 944 |
+
# save_user_usage(usage)
|
| 945 |
+
# return usage[email_key]
|
| 946 |
+
def increment_usage(email: str, count: int = 1):
|
| 947 |
+
usage, permitted = load_user_usage()
|
| 948 |
+
email_key = email.strip().lower()
|
| 949 |
+
#usage[email_key] = usage.get(email_key, 0) + count
|
| 950 |
+
current = usage.get(email_key, 0)
|
| 951 |
+
new_value = current + count
|
| 952 |
+
max_allowed = permitted.get(email_key) or 50
|
| 953 |
+
usage[email_key] = max(current, new_value) # β
Prevent overwrite with lower
|
| 954 |
+
print(f"π§ͺ increment_usage saving: {email_key=} {current=} + {count=} => {usage[email_key]=}")
|
| 955 |
+
print("max allow is: ", max_allowed)
|
| 956 |
+
save_user_usage(usage)
|
| 957 |
+
return usage[email_key], max_allowed
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
# run the batch
|
| 961 |
+
def summarize_batch(file=None, raw_text="", resume_file=None, user_email="",
|
| 962 |
+
stop_flag=None, output_file_path=None,
|
| 963 |
+
limited_acc=50, yield_callback=None):
|
| 964 |
+
if user_email:
|
| 965 |
+
limited_acc += 10
|
| 966 |
+
accessions, error = extract_accessions_from_input(file, raw_text)
|
| 967 |
+
if error:
|
| 968 |
+
#return [], "", "", f"Error: {error}"
|
| 969 |
+
return [], f"Error: {error}", 0, "", ""
|
| 970 |
+
if resume_file:
|
| 971 |
+
accessions = get_incomplete_accessions(resume_file)
|
| 972 |
+
tmp_dir = tempfile.mkdtemp()
|
| 973 |
+
if not output_file_path:
|
| 974 |
+
if resume_file:
|
| 975 |
+
output_file_path = os.path.join(tmp_dir, resume_file)
|
| 976 |
+
else:
|
| 977 |
+
output_file_path = os.path.join(tmp_dir, "batch_output_live.xlsx")
|
| 978 |
+
|
| 979 |
+
all_rows = []
|
| 980 |
+
# all_summaries = []
|
| 981 |
+
# all_flags = []
|
| 982 |
+
progress_lines = []
|
| 983 |
+
warning = ""
|
| 984 |
+
if len(accessions) > limited_acc:
|
| 985 |
+
accessions = accessions[:limited_acc]
|
| 986 |
+
warning = f"Your number of accessions is more than the {limited_acc}, only handle first {limited_acc} accessions"
|
| 987 |
+
for i, acc in enumerate(accessions):
|
| 988 |
+
if stop_flag and stop_flag.value:
|
| 989 |
+
line = f"π Stopped at {acc} ({i+1}/{len(accessions)})"
|
| 990 |
+
progress_lines.append(line)
|
| 991 |
+
if yield_callback:
|
| 992 |
+
yield_callback(line)
|
| 993 |
+
print("π User requested stop.")
|
| 994 |
+
break
|
| 995 |
+
print(f"[{i+1}/{len(accessions)}] Processing {acc}")
|
| 996 |
+
try:
|
| 997 |
+
# rows, summary, label, explain = summarize_results(acc)
|
| 998 |
+
rows = summarize_results(acc)
|
| 999 |
+
all_rows.extend(rows)
|
| 1000 |
+
# all_summaries.append(f"**{acc}**\n{summary}")
|
| 1001 |
+
# all_flags.append(f"**{acc}**\n### πΊ Ancient/Modern Flag\n**{label}**\n\n_Explanation:_ {explain}")
|
| 1002 |
+
#save_to_excel(all_rows, summary_text="", flag_text="", filename=output_file_path)
|
| 1003 |
+
save_to_excel(all_rows, summary_text="", flag_text="", filename=output_file_path, is_resume=bool(resume_file))
|
| 1004 |
+
line = f"β
Processed {acc} ({i+1}/{len(accessions)})"
|
| 1005 |
+
progress_lines.append(line)
|
| 1006 |
+
if yield_callback:
|
| 1007 |
+
yield_callback(f"β
Processed {acc} ({i+1}/{len(accessions)})")
|
| 1008 |
+
except Exception as e:
|
| 1009 |
+
print(f"β Failed to process {acc}: {e}")
|
| 1010 |
+
continue
|
| 1011 |
+
#all_summaries.append(f"**{acc}**: Failed - {e}")
|
| 1012 |
+
#progress_lines.append(f"β
Processed {acc} ({i+1}/{len(accessions)})")
|
| 1013 |
+
limited_acc -= 1
|
| 1014 |
+
"""for row in all_rows:
|
| 1015 |
+
source_column = row[2] # Assuming the "Source" is in the 3rd column (index 2)
|
| 1016 |
+
|
| 1017 |
+
if source_column.startswith("http"): # Check if the source is a URL
|
| 1018 |
+
# Wrap it with HTML anchor tags to make it clickable
|
| 1019 |
+
row[2] = f'<a href="{source_column}" target="_blank" style="color: blue; text-decoration: underline;">{source_column}</a>'"""
|
| 1020 |
+
if not warning:
|
| 1021 |
+
warning = f"You only have {limited_acc} left"
|
| 1022 |
+
if user_email.strip():
|
| 1023 |
+
user_hash = hash_user_id(user_email)
|
| 1024 |
+
total_queries = increment_usage(user_hash, len(all_rows))
|
| 1025 |
+
else:
|
| 1026 |
+
total_queries = 0
|
| 1027 |
+
yield_callback("β
Finished!")
|
| 1028 |
+
|
| 1029 |
+
# summary_text = "\n\n---\n\n".join(all_summaries)
|
| 1030 |
+
# flag_text = "\n\n---\n\n".join(all_flags)
|
| 1031 |
+
#return all_rows, summary_text, flag_text, gr.update(visible=True), gr.update(visible=False)
|
| 1032 |
+
#return all_rows, gr.update(visible=True), gr.update(visible=False)
|
| 1033 |
return all_rows, output_file_path, total_queries, "\n".join(progress_lines), warning
|