|
import torch
|
|
import numpy as np
|
|
|
|
def load_glove_embeddings(embeddings_file):
|
|
"""Load embeddings from a file."""
|
|
embeddings = {}
|
|
with open(embeddings_file, "r", encoding="utf8") as fp:
|
|
for index, line in enumerate(fp):
|
|
values = line.split()
|
|
word = values[0]
|
|
embedding = np.asarray(values[1:], dtype='float32')
|
|
embeddings[word] = embedding
|
|
return embeddings
|
|
|
|
def make_embeddings_matrix(embeddings, word_index, embedding_dim):
|
|
"""Create embeddings matrix to use in Embedding layer."""
|
|
embedding_matrix = np.zeros((len(word_index), embedding_dim))
|
|
for word, i in word_index.items():
|
|
embedding_vector = embeddings.get(word)
|
|
if embedding_vector is not None:
|
|
embedding_matrix[i] = embedding_vector
|
|
return embedding_matrix
|
|
|
|
def get_embeddings(embedding_file_path, tokenizer, embedding_dim):
|
|
glove_embeddings = load_glove_embeddings(embeddings_file=embedding_file_path)
|
|
embedding_matrix = make_embeddings_matrix(embeddings=glove_embeddings, word_index=tokenizer.token_to_index, embedding_dim=embedding_dim)
|
|
return embedding_matrix |