Fix parameter doc
Browse files
pr_auc.py
CHANGED
@@ -18,7 +18,6 @@ import datasets
|
|
18 |
from sklearn.metrics import precision_recall_curve, auc
|
19 |
|
20 |
|
21 |
-
# TODO: Add BibTeX citation
|
22 |
_CITATION = """\
|
23 |
@InProceedings{huggingface:module,
|
24 |
title = {A great new module},
|
@@ -27,7 +26,6 @@ year={2020}
|
|
27 |
}
|
28 |
"""
|
29 |
|
30 |
-
# TODO: Add description of the module here
|
31 |
_DESCRIPTION = """\
|
32 |
Computes the area under precision-recall curve. Implementation details taken from https://sinyi-chou.github.io/python-sklearn-precision-recall/
|
33 |
"""
|
@@ -37,31 +35,20 @@ Computes the area under precision-recall curve. Implementation details taken fro
|
|
37 |
_KWARGS_DESCRIPTION = """
|
38 |
Calculates how good are predictions given some references, using certain scores
|
39 |
Args:
|
40 |
-
|
41 |
-
should be a string with tokens separated by spaces.
|
42 |
references: list of reference for each prediction. Each
|
43 |
reference should be a string with tokens separated by spaces.
|
44 |
Returns:
|
45 |
-
|
46 |
-
another_score: description of the second score,
|
47 |
Examples:
|
48 |
-
|
49 |
-
to use the function.
|
50 |
-
|
51 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
52 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
53 |
-
>>> print(results)
|
54 |
-
{'accuracy': 1.0}
|
55 |
"""
|
56 |
|
57 |
-
|
58 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
59 |
|
60 |
|
61 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
62 |
class PRAUC(evaluate.Metric):
|
63 |
-
"""TODO: Short description of my evaluation module."""
|
64 |
-
|
65 |
def _info(self):
|
66 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
67 |
return evaluate.MetricInfo(
|
|
|
18 |
from sklearn.metrics import precision_recall_curve, auc
|
19 |
|
20 |
|
|
|
21 |
_CITATION = """\
|
22 |
@InProceedings{huggingface:module,
|
23 |
title = {A great new module},
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
|
|
29 |
_DESCRIPTION = """\
|
30 |
Computes the area under precision-recall curve. Implementation details taken from https://sinyi-chou.github.io/python-sklearn-precision-recall/
|
31 |
"""
|
|
|
35 |
_KWARGS_DESCRIPTION = """
|
36 |
Calculates how good are predictions given some references, using certain scores
|
37 |
Args:
|
38 |
+
prediction_scores: Model predictions
|
|
|
39 |
references: list of reference for each prediction. Each
|
40 |
reference should be a string with tokens separated by spaces.
|
41 |
Returns:
|
42 |
+
pr_auc: area under the precision-recall curve,
|
|
|
43 |
Examples:
|
44 |
+
No examples
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
|
47 |
+
BAD_WORDS_URL = ""
|
|
|
48 |
|
49 |
|
50 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
51 |
class PRAUC(evaluate.Metric):
|
|
|
|
|
52 |
def _info(self):
|
53 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
54 |
return evaluate.MetricInfo(
|