Spaces:
Runtime error
Runtime error
Commit
·
ca19c59
1
Parent(s):
8ae6d76
Updated TTS to latest version
Browse files- TTS/.github/workflows/zoo_tests_tortoise.yml +52 -0
- TTS/README.md +21 -8
- TTS/TTS/.models.json +20 -5
- TTS/TTS/VERSION +1 -1
- TTS/TTS/api.py +18 -5
- TTS/TTS/bin/synthesize.py +198 -161
- TTS/TTS/cs_api.py +5 -1
- TTS/TTS/tts/configs/xtts_config.py +3 -3
- TTS/TTS/tts/layers/tortoise/tokenizer.py +5 -1
- TTS/TTS/tts/layers/xtts/gpt.py +23 -1
- TTS/TTS/tts/layers/xtts/gpt_encoder_eren.py +0 -658
- TTS/TTS/tts/layers/xtts/gpt_encoder_old.py +0 -1057
- TTS/TTS/tts/layers/xtts/hifigan_decoder.py +742 -0
- TTS/TTS/tts/layers/xtts/stream_generator.py +1057 -0
- TTS/TTS/tts/layers/xtts/tokenizer.py +445 -178
- TTS/TTS/tts/layers/xtts/zh_num2words.py +1207 -0
- TTS/TTS/tts/models/forward_tts.py +3 -1
- TTS/TTS/tts/models/xtts.py +307 -111
- TTS/TTS/utils/audio/numpy_transforms.py +11 -2
- TTS/TTS/utils/audio/processor.py +10 -2
- TTS/TTS/utils/manage.py +66 -24
- TTS/TTS/utils/synthesizer.py +7 -8
- TTS/docs/source/formatting_your_dataset.md +6 -5
- TTS/docs/source/implementing_a_new_model.md +1 -1
- TTS/docs/source/inference.md +13 -7
- TTS/docs/source/main_classes/trainer_api.md +1 -1
- TTS/docs/source/models/forward_tts.md +1 -1
- TTS/docs/source/models/xtts.md +70 -16
- TTS/notebooks/ExtractTTSpectrogram.ipynb +103 -78
- TTS/notebooks/dataset_analysis/AnalyzeDataset.ipynb +1 -1
- TTS/requirements.ja.txt +1 -0
- TTS/tests/api_tests/test_synthesize_api.py +13 -0
- TTS/tests/zoo_tests/test_models.py +81 -11
TTS/.github/workflows/zoo_tests_tortoise.yml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: zoo-tests-tortoise
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
pull_request:
|
8 |
+
types: [opened, synchronize, reopened]
|
9 |
+
jobs:
|
10 |
+
check_skip:
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
if: "! contains(github.event.head_commit.message, '[ci skip]')"
|
13 |
+
steps:
|
14 |
+
- run: echo "${{ github.event.head_commit.message }}"
|
15 |
+
|
16 |
+
test:
|
17 |
+
runs-on: ubuntu-latest
|
18 |
+
strategy:
|
19 |
+
fail-fast: false
|
20 |
+
matrix:
|
21 |
+
python-version: [3.9, "3.10", "3.11"]
|
22 |
+
experimental: [false]
|
23 |
+
steps:
|
24 |
+
- uses: actions/checkout@v3
|
25 |
+
- name: Set up Python ${{ matrix.python-version }}
|
26 |
+
uses: actions/setup-python@v4
|
27 |
+
with:
|
28 |
+
python-version: ${{ matrix.python-version }}
|
29 |
+
architecture: x64
|
30 |
+
cache: 'pip'
|
31 |
+
cache-dependency-path: 'requirements*'
|
32 |
+
- name: check OS
|
33 |
+
run: cat /etc/os-release
|
34 |
+
- name: set ENV
|
35 |
+
run: export TRAINER_TELEMETRY=0
|
36 |
+
- name: Install dependencies
|
37 |
+
run: |
|
38 |
+
sudo apt-get update
|
39 |
+
sudo apt-get install -y git make gcc
|
40 |
+
sudo apt-get install espeak espeak-ng
|
41 |
+
make system-deps
|
42 |
+
- name: Install/upgrade Python setup deps
|
43 |
+
run: python3 -m pip install --upgrade pip setuptools wheel
|
44 |
+
- name: Replace scarf urls
|
45 |
+
run: |
|
46 |
+
sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json
|
47 |
+
- name: Install TTS
|
48 |
+
run: |
|
49 |
+
python3 -m pip install .[all]
|
50 |
+
python3 setup.py egg_info
|
51 |
+
- name: Unit tests
|
52 |
+
run: nose2 -F -v -B --with-coverage --coverage TTS tests.zoo_tests.test_models.test_tortoise
|
TTS/README.md
CHANGED
@@ -146,7 +146,7 @@ Underlined "TTS*" and "Judy*" are **internal** 🐸TTS models that are not relea
|
|
146 |
You can also help us implement more models.
|
147 |
|
148 |
## Installation
|
149 |
-
🐸TTS is tested on Ubuntu 18.04 with **python >= 3.
|
150 |
|
151 |
If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option.
|
152 |
|
@@ -198,17 +198,18 @@ from TTS.api import TTS
|
|
198 |
# Get device
|
199 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
200 |
|
201 |
-
# List available 🐸TTS models
|
202 |
-
|
|
|
203 |
# Init TTS
|
204 |
-
tts = TTS(
|
205 |
|
206 |
# Run TTS
|
207 |
-
# ❗ Since this model is multi-
|
208 |
-
# Text to speech
|
209 |
-
wav = tts.tts("
|
210 |
# Text to speech to a file
|
211 |
-
tts.tts_to_file(text="Hello world!",
|
212 |
```
|
213 |
|
214 |
#### Running a single speaker model
|
@@ -347,6 +348,18 @@ If you don't specify any models, then it uses LJSpeech based English model.
|
|
347 |
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
348 |
```
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
- Run a TTS model with its default vocoder model:
|
351 |
|
352 |
```
|
|
|
146 |
You can also help us implement more models.
|
147 |
|
148 |
## Installation
|
149 |
+
🐸TTS is tested on Ubuntu 18.04 with **python >= 3.9, < 3.12.**.
|
150 |
|
151 |
If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option.
|
152 |
|
|
|
198 |
# Get device
|
199 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
200 |
|
201 |
+
# List available 🐸TTS models
|
202 |
+
print(TTS().list_models())
|
203 |
+
|
204 |
# Init TTS
|
205 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1").to(device)
|
206 |
|
207 |
# Run TTS
|
208 |
+
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
209 |
+
# Text to speech list of amplitude values as output
|
210 |
+
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
211 |
# Text to speech to a file
|
212 |
+
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
213 |
```
|
214 |
|
215 |
#### Running a single speaker model
|
|
|
348 |
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
349 |
```
|
350 |
|
351 |
+
- Run TTS and pipe out the generated TTS wav file data:
|
352 |
+
|
353 |
+
```
|
354 |
+
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
355 |
+
```
|
356 |
+
|
357 |
+
- Run TTS and define speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0:
|
358 |
+
|
359 |
+
```
|
360 |
+
$ tts --text "Text for TTS" --model_name "coqui_studio/<language>/<dataset>/<model_name>" --speed 1.2 --out_path output/path/speech.wav
|
361 |
+
```
|
362 |
+
|
363 |
- Run a TTS model with its default vocoder model:
|
364 |
|
365 |
```
|
TTS/TTS/.models.json
CHANGED
@@ -5,12 +5,27 @@
|
|
5 |
"xtts_v1": {
|
6 |
"description": "XTTS-v1 by Coqui with 13 languages and cross-language voice cloning.",
|
7 |
"hf_url": [
|
8 |
-
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/model.pth",
|
9 |
-
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/config.json",
|
10 |
-
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/vocab.json"
|
11 |
],
|
12 |
"default_vocoder": null,
|
13 |
-
"commit": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"license": "CPML",
|
15 |
"contact": "info@coqui.ai",
|
16 |
"tos_required": true
|
@@ -917,4 +932,4 @@
|
|
917 |
}
|
918 |
}
|
919 |
}
|
920 |
-
}
|
|
|
5 |
"xtts_v1": {
|
6 |
"description": "XTTS-v1 by Coqui with 13 languages and cross-language voice cloning.",
|
7 |
"hf_url": [
|
8 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/model.pth",
|
9 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/config.json",
|
10 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/vocab.json"
|
11 |
],
|
12 |
"default_vocoder": null,
|
13 |
+
"commit": "e5140314",
|
14 |
+
"license": "CPML",
|
15 |
+
"contact": "info@coqui.ai",
|
16 |
+
"tos_required": true
|
17 |
+
},
|
18 |
+
"xtts_v1.1": {
|
19 |
+
"description": "XTTS-v1.1 by Coqui with 14 languages, cross-language voice cloning and reference leak fixed.",
|
20 |
+
"hf_url": [
|
21 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/model.pth",
|
22 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/config.json",
|
23 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/vocab.json",
|
24 |
+
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/hash.md5"
|
25 |
+
],
|
26 |
+
"model_hash": "ae9e4b39e095fd5728fe7f7931ec66ad",
|
27 |
+
"default_vocoder": null,
|
28 |
+
"commit": "82910a63",
|
29 |
"license": "CPML",
|
30 |
"contact": "info@coqui.ai",
|
31 |
"tos_required": true
|
|
|
932 |
}
|
933 |
}
|
934 |
}
|
935 |
+
}
|
TTS/TTS/VERSION
CHANGED
@@ -1 +1 @@
|
|
1 |
-
0.
|
|
|
1 |
+
0.18.2
|
TTS/TTS/api.py
CHANGED
@@ -17,7 +17,7 @@ class TTS(nn.Module):
|
|
17 |
|
18 |
def __init__(
|
19 |
self,
|
20 |
-
model_name: str =
|
21 |
model_path: str = None,
|
22 |
config_path: str = None,
|
23 |
vocoder_path: str = None,
|
@@ -105,8 +105,8 @@ class TTS(nn.Module):
|
|
105 |
|
106 |
@property
|
107 |
def is_multi_lingual(self):
|
108 |
-
#
|
109 |
-
if "xtts" in self.model_name:
|
110 |
return True
|
111 |
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
|
112 |
return self.synthesizer.tts_model.language_manager.num_languages > 1
|
@@ -264,6 +264,7 @@ class TTS(nn.Module):
|
|
264 |
language: str = None,
|
265 |
emotion: str = None,
|
266 |
speed: float = 1.0,
|
|
|
267 |
file_path: str = None,
|
268 |
) -> Union[np.ndarray, str]:
|
269 |
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API.
|
@@ -280,6 +281,8 @@ class TTS(nn.Module):
|
|
280 |
with "V1" model. Defaults to None.
|
281 |
speed (float, optional):
|
282 |
Speed of the speech. Defaults to 1.0.
|
|
|
|
|
283 |
file_path (str, optional):
|
284 |
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None.
|
285 |
|
@@ -293,6 +296,7 @@ class TTS(nn.Module):
|
|
293 |
speaker_name=speaker_name,
|
294 |
language=language,
|
295 |
speed=speed,
|
|
|
296 |
emotion=emotion,
|
297 |
file_path=file_path,
|
298 |
)[0]
|
@@ -355,6 +359,7 @@ class TTS(nn.Module):
|
|
355 |
speaker_wav: str = None,
|
356 |
emotion: str = None,
|
357 |
speed: float = 1.0,
|
|
|
358 |
file_path: str = "output.wav",
|
359 |
**kwargs,
|
360 |
):
|
@@ -376,6 +381,8 @@ class TTS(nn.Module):
|
|
376 |
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
|
377 |
speed (float, optional):
|
378 |
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
|
|
|
|
|
379 |
file_path (str, optional):
|
380 |
Output file path. Defaults to "output.wav".
|
381 |
kwargs (dict, optional):
|
@@ -385,10 +392,16 @@ class TTS(nn.Module):
|
|
385 |
|
386 |
if self.csapi is not None:
|
387 |
return self.tts_coqui_studio(
|
388 |
-
text=text,
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
)
|
390 |
wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
|
391 |
-
self.synthesizer.save_wav(wav=wav, path=file_path)
|
392 |
return file_path
|
393 |
|
394 |
def voice_conversion(
|
|
|
17 |
|
18 |
def __init__(
|
19 |
self,
|
20 |
+
model_name: str = "",
|
21 |
model_path: str = None,
|
22 |
config_path: str = None,
|
23 |
vocoder_path: str = None,
|
|
|
105 |
|
106 |
@property
|
107 |
def is_multi_lingual(self):
|
108 |
+
# Not sure what sets this to None, but applied a fix to prevent crashing.
|
109 |
+
if isinstance(self.model_name, str) and "xtts" in self.model_name:
|
110 |
return True
|
111 |
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
|
112 |
return self.synthesizer.tts_model.language_manager.num_languages > 1
|
|
|
264 |
language: str = None,
|
265 |
emotion: str = None,
|
266 |
speed: float = 1.0,
|
267 |
+
pipe_out = None,
|
268 |
file_path: str = None,
|
269 |
) -> Union[np.ndarray, str]:
|
270 |
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API.
|
|
|
281 |
with "V1" model. Defaults to None.
|
282 |
speed (float, optional):
|
283 |
Speed of the speech. Defaults to 1.0.
|
284 |
+
pipe_out (BytesIO, optional):
|
285 |
+
Flag to stdout the generated TTS wav file for shell pipe.
|
286 |
file_path (str, optional):
|
287 |
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None.
|
288 |
|
|
|
296 |
speaker_name=speaker_name,
|
297 |
language=language,
|
298 |
speed=speed,
|
299 |
+
pipe_out=pipe_out,
|
300 |
emotion=emotion,
|
301 |
file_path=file_path,
|
302 |
)[0]
|
|
|
359 |
speaker_wav: str = None,
|
360 |
emotion: str = None,
|
361 |
speed: float = 1.0,
|
362 |
+
pipe_out = None,
|
363 |
file_path: str = "output.wav",
|
364 |
**kwargs,
|
365 |
):
|
|
|
381 |
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
|
382 |
speed (float, optional):
|
383 |
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
|
384 |
+
pipe_out (BytesIO, optional):
|
385 |
+
Flag to stdout the generated TTS wav file for shell pipe.
|
386 |
file_path (str, optional):
|
387 |
Output file path. Defaults to "output.wav".
|
388 |
kwargs (dict, optional):
|
|
|
392 |
|
393 |
if self.csapi is not None:
|
394 |
return self.tts_coqui_studio(
|
395 |
+
text=text,
|
396 |
+
speaker_name=speaker,
|
397 |
+
language=language,
|
398 |
+
emotion=emotion,
|
399 |
+
speed=speed,
|
400 |
+
file_path=file_path,
|
401 |
+
pipe_out=pipe_out,
|
402 |
)
|
403 |
wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
|
404 |
+
self.synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out)
|
405 |
return file_path
|
406 |
|
407 |
def voice_conversion(
|
TTS/TTS/bin/synthesize.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
import argparse
|
|
|
5 |
import sys
|
6 |
from argparse import RawTextHelpFormatter
|
7 |
|
@@ -59,6 +60,18 @@ If you don't specify any models, then it uses LJSpeech based English model.
|
|
59 |
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
60 |
```
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
- Run a TTS model with its default vocoder model:
|
63 |
|
64 |
```
|
@@ -228,6 +241,20 @@ def main():
|
|
228 |
help="Language to condition the model with. Only available for 🐸Coqui Studio `XTTS-multilingual` model.",
|
229 |
default=None,
|
230 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
# args for multi-speaker synthesis
|
233 |
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
|
@@ -335,167 +362,177 @@ def main():
|
|
335 |
if not any(check_args):
|
336 |
parser.parse_args(["-h"])
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
#
|
396 |
-
if
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
|
501 |
if __name__ == "__main__":
|
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
import argparse
|
5 |
+
import contextlib
|
6 |
import sys
|
7 |
from argparse import RawTextHelpFormatter
|
8 |
|
|
|
60 |
$ tts --text "Text for TTS" --out_path output/path/speech.wav
|
61 |
```
|
62 |
|
63 |
+
- Run TTS and pipe out the generated TTS wav file data:
|
64 |
+
|
65 |
+
```
|
66 |
+
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
|
67 |
+
```
|
68 |
+
|
69 |
+
- Run TTS and define speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0:
|
70 |
+
|
71 |
+
```
|
72 |
+
$ tts --text "Text for TTS" --model_name "coqui_studio/<language>/<dataset>/<model_name>" --speed 1.2 --out_path output/path/speech.wav
|
73 |
+
```
|
74 |
+
|
75 |
- Run a TTS model with its default vocoder model:
|
76 |
|
77 |
```
|
|
|
241 |
help="Language to condition the model with. Only available for 🐸Coqui Studio `XTTS-multilingual` model.",
|
242 |
default=None,
|
243 |
)
|
244 |
+
parser.add_argument(
|
245 |
+
"--pipe_out",
|
246 |
+
help="stdout the generated TTS wav file for shell pipe.",
|
247 |
+
type=str2bool,
|
248 |
+
nargs="?",
|
249 |
+
const=True,
|
250 |
+
default=False,
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--speed",
|
254 |
+
type=float,
|
255 |
+
help="Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0.",
|
256 |
+
default=None,
|
257 |
+
)
|
258 |
|
259 |
# args for multi-speaker synthesis
|
260 |
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
|
|
|
362 |
if not any(check_args):
|
363 |
parser.parse_args(["-h"])
|
364 |
|
365 |
+
pipe_out = sys.stdout if args.pipe_out else None
|
366 |
+
|
367 |
+
with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout):
|
368 |
+
# Late-import to make things load faster
|
369 |
+
from TTS.api import TTS
|
370 |
+
from TTS.utils.manage import ModelManager
|
371 |
+
from TTS.utils.synthesizer import Synthesizer
|
372 |
+
|
373 |
+
# load model manager
|
374 |
+
path = Path(__file__).parent / "../.models.json"
|
375 |
+
manager = ModelManager(path, progress_bar=args.progress_bar)
|
376 |
+
api = TTS()
|
377 |
+
|
378 |
+
tts_path = None
|
379 |
+
tts_config_path = None
|
380 |
+
speakers_file_path = None
|
381 |
+
language_ids_file_path = None
|
382 |
+
vocoder_path = None
|
383 |
+
vocoder_config_path = None
|
384 |
+
encoder_path = None
|
385 |
+
encoder_config_path = None
|
386 |
+
vc_path = None
|
387 |
+
vc_config_path = None
|
388 |
+
model_dir = None
|
389 |
+
|
390 |
+
# CASE1 #list : list pre-trained TTS models
|
391 |
+
if args.list_models:
|
392 |
+
manager.add_cs_api_models(api.list_models())
|
393 |
+
manager.list_models()
|
394 |
+
sys.exit()
|
395 |
+
|
396 |
+
# CASE2 #info : model info for pre-trained TTS models
|
397 |
+
if args.model_info_by_idx:
|
398 |
+
model_query = args.model_info_by_idx
|
399 |
+
manager.model_info_by_idx(model_query)
|
400 |
+
sys.exit()
|
401 |
+
|
402 |
+
if args.model_info_by_name:
|
403 |
+
model_query_full_name = args.model_info_by_name
|
404 |
+
manager.model_info_by_full_name(model_query_full_name)
|
405 |
+
sys.exit()
|
406 |
+
|
407 |
+
# CASE3: TTS with coqui studio models
|
408 |
+
if "coqui_studio" in args.model_name:
|
409 |
+
print(" > Using 🐸Coqui Studio model: ", args.model_name)
|
410 |
+
api = TTS(model_name=args.model_name, cs_api_model=args.cs_model)
|
411 |
+
api.tts_to_file(
|
412 |
+
text=args.text,
|
413 |
+
emotion=args.emotion,
|
414 |
+
file_path=args.out_path,
|
415 |
+
language=args.language,
|
416 |
+
speed=args.speed,
|
417 |
+
pipe_out=pipe_out,
|
418 |
+
)
|
419 |
+
print(" > Saving output to ", args.out_path)
|
420 |
+
return
|
421 |
+
|
422 |
+
# CASE4: load pre-trained model paths
|
423 |
+
if args.model_name is not None and not args.model_path:
|
424 |
+
model_path, config_path, model_item = manager.download_model(args.model_name)
|
425 |
+
# tts model
|
426 |
+
if model_item["model_type"] == "tts_models":
|
427 |
+
tts_path = model_path
|
428 |
+
tts_config_path = config_path
|
429 |
+
if "default_vocoder" in model_item:
|
430 |
+
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name
|
431 |
+
|
432 |
+
# voice conversion model
|
433 |
+
if model_item["model_type"] == "voice_conversion_models":
|
434 |
+
vc_path = model_path
|
435 |
+
vc_config_path = config_path
|
436 |
+
|
437 |
+
# tts model with multiple files to be loaded from the directory path
|
438 |
+
if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list):
|
439 |
+
model_dir = model_path
|
440 |
+
tts_path = None
|
441 |
+
tts_config_path = None
|
442 |
+
args.vocoder_name = None
|
443 |
+
|
444 |
+
# load vocoder
|
445 |
+
if args.vocoder_name is not None and not args.vocoder_path:
|
446 |
+
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)
|
447 |
+
|
448 |
+
# CASE5: set custom model paths
|
449 |
+
if args.model_path is not None:
|
450 |
+
tts_path = args.model_path
|
451 |
+
tts_config_path = args.config_path
|
452 |
+
speakers_file_path = args.speakers_file_path
|
453 |
+
language_ids_file_path = args.language_ids_file_path
|
454 |
+
|
455 |
+
if args.vocoder_path is not None:
|
456 |
+
vocoder_path = args.vocoder_path
|
457 |
+
vocoder_config_path = args.vocoder_config_path
|
458 |
+
|
459 |
+
if args.encoder_path is not None:
|
460 |
+
encoder_path = args.encoder_path
|
461 |
+
encoder_config_path = args.encoder_config_path
|
462 |
+
|
463 |
+
device = args.device
|
464 |
+
if args.use_cuda:
|
465 |
+
device = "cuda"
|
466 |
+
|
467 |
+
# load models
|
468 |
+
synthesizer = Synthesizer(
|
469 |
+
tts_path,
|
470 |
+
tts_config_path,
|
471 |
+
speakers_file_path,
|
472 |
+
language_ids_file_path,
|
473 |
+
vocoder_path,
|
474 |
+
vocoder_config_path,
|
475 |
+
encoder_path,
|
476 |
+
encoder_config_path,
|
477 |
+
vc_path,
|
478 |
+
vc_config_path,
|
479 |
+
model_dir,
|
480 |
+
args.voice_dir,
|
481 |
+
).to(device)
|
482 |
+
|
483 |
+
# query speaker ids of a multi-speaker model.
|
484 |
+
if args.list_speaker_idxs:
|
485 |
+
print(
|
486 |
+
" > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model."
|
487 |
+
)
|
488 |
+
print(synthesizer.tts_model.speaker_manager.name_to_id)
|
489 |
+
return
|
490 |
+
|
491 |
+
# query langauge ids of a multi-lingual model.
|
492 |
+
if args.list_language_idxs:
|
493 |
+
print(
|
494 |
+
" > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model."
|
495 |
+
)
|
496 |
+
print(synthesizer.tts_model.language_manager.name_to_id)
|
497 |
+
return
|
498 |
+
|
499 |
+
# check the arguments against a multi-speaker model.
|
500 |
+
if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav):
|
501 |
+
print(
|
502 |
+
" [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to "
|
503 |
+
"select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`."
|
504 |
+
)
|
505 |
+
return
|
506 |
+
|
507 |
+
# RUN THE SYNTHESIS
|
508 |
+
if args.text:
|
509 |
+
print(" > Text: {}".format(args.text))
|
510 |
+
|
511 |
+
# kick it
|
512 |
+
if tts_path is not None:
|
513 |
+
wav = synthesizer.tts(
|
514 |
+
args.text,
|
515 |
+
speaker_name=args.speaker_idx,
|
516 |
+
language_name=args.language_idx,
|
517 |
+
speaker_wav=args.speaker_wav,
|
518 |
+
reference_wav=args.reference_wav,
|
519 |
+
style_wav=args.capacitron_style_wav,
|
520 |
+
style_text=args.capacitron_style_text,
|
521 |
+
reference_speaker_name=args.reference_speaker_idx,
|
522 |
+
)
|
523 |
+
elif vc_path is not None:
|
524 |
+
wav = synthesizer.voice_conversion(
|
525 |
+
source_wav=args.source_wav,
|
526 |
+
target_wav=args.target_wav,
|
527 |
+
)
|
528 |
+
elif model_dir is not None:
|
529 |
+
wav = synthesizer.tts(
|
530 |
+
args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav
|
531 |
+
)
|
532 |
+
|
533 |
+
# save the results
|
534 |
+
print(" > Saving output to {}".format(args.out_path))
|
535 |
+
synthesizer.save_wav(wav, args.out_path, pipe_out=pipe_out)
|
536 |
|
537 |
|
538 |
if __name__ == "__main__":
|
TTS/TTS/cs_api.py
CHANGED
@@ -9,6 +9,8 @@ import numpy as np
|
|
9 |
import requests
|
10 |
from scipy.io import wavfile
|
11 |
|
|
|
|
|
12 |
|
13 |
class Speaker(object):
|
14 |
"""Convert dict to object."""
|
@@ -288,6 +290,7 @@ class CS_API:
|
|
288 |
speaker_id=None,
|
289 |
emotion=None,
|
290 |
speed=1.0,
|
|
|
291 |
language=None,
|
292 |
file_path: str = None,
|
293 |
) -> str:
|
@@ -300,6 +303,7 @@ class CS_API:
|
|
300 |
speaker_id (str): Speaker ID. If None, the speaker name is used.
|
301 |
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
|
302 |
speed (float): Speed of the speech. 1.0 is normal speed.
|
|
|
303 |
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
|
304 |
supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en".
|
305 |
file_path (str): Path to save the file. If None, a temporary file is created.
|
@@ -307,7 +311,7 @@ class CS_API:
|
|
307 |
if file_path is None:
|
308 |
file_path = tempfile.mktemp(".wav")
|
309 |
wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
|
310 |
-
|
311 |
return file_path
|
312 |
|
313 |
|
|
|
9 |
import requests
|
10 |
from scipy.io import wavfile
|
11 |
|
12 |
+
from TTS.utils.audio.numpy_transforms import save_wav
|
13 |
+
|
14 |
|
15 |
class Speaker(object):
|
16 |
"""Convert dict to object."""
|
|
|
290 |
speaker_id=None,
|
291 |
emotion=None,
|
292 |
speed=1.0,
|
293 |
+
pipe_out=None,
|
294 |
language=None,
|
295 |
file_path: str = None,
|
296 |
) -> str:
|
|
|
303 |
speaker_id (str): Speaker ID. If None, the speaker name is used.
|
304 |
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
|
305 |
speed (float): Speed of the speech. 1.0 is normal speed.
|
306 |
+
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
|
307 |
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
|
308 |
supported by `XTTS-multilang` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en".
|
309 |
file_path (str): Path to save the file. If None, a temporary file is created.
|
|
|
311 |
if file_path is None:
|
312 |
file_path = tempfile.mktemp(".wav")
|
313 |
wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
|
314 |
+
save_wav(wav=wav, path=file_path, sample_rate=sr, pipe_out=pipe_out)
|
315 |
return file_path
|
316 |
|
317 |
|
TTS/TTS/tts/configs/xtts_config.py
CHANGED
@@ -78,13 +78,13 @@ class XttsConfig(BaseTTSConfig):
|
|
78 |
)
|
79 |
|
80 |
# inference params
|
81 |
-
temperature: float = 0.
|
82 |
length_penalty: float = 1.0
|
83 |
repetition_penalty: float = 2.0
|
84 |
top_k: int = 50
|
85 |
-
top_p: float = 0.
|
86 |
cond_free_k: float = 2.0
|
87 |
diffusion_temperature: float = 1.0
|
88 |
-
num_gpt_outputs: int =
|
89 |
decoder_iterations: int = 30
|
90 |
decoder_sampler: str = "ddim"
|
|
|
78 |
)
|
79 |
|
80 |
# inference params
|
81 |
+
temperature: float = 0.85
|
82 |
length_penalty: float = 1.0
|
83 |
repetition_penalty: float = 2.0
|
84 |
top_k: int = 50
|
85 |
+
top_p: float = 0.85
|
86 |
cond_free_k: float = 2.0
|
87 |
diffusion_temperature: float = 1.0
|
88 |
+
num_gpt_outputs: int = 1
|
89 |
decoder_iterations: int = 30
|
90 |
decoder_sampler: str = "ddim"
|
TTS/TTS/tts/layers/tortoise/tokenizer.py
CHANGED
@@ -5,9 +5,13 @@ from tokenizers import Tokenizer
|
|
5 |
|
6 |
from TTS.tts.utils.text.cleaners import english_cleaners
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class VoiceBpeTokenizer:
|
10 |
-
def __init__(self, vocab_file=
|
11 |
self.tokenizer = None
|
12 |
if vocab_file is not None:
|
13 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
|
|
5 |
|
6 |
from TTS.tts.utils.text.cleaners import english_cleaners
|
7 |
|
8 |
+
DEFAULT_VOCAB_FILE = os.path.join(
|
9 |
+
os.path.dirname(os.path.realpath(__file__)), "../../utils/assets/tortoise/tokenizer.json"
|
10 |
+
)
|
11 |
+
|
12 |
|
13 |
class VoiceBpeTokenizer:
|
14 |
+
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE, vocab_str=None):
|
15 |
self.tokenizer = None
|
16 |
if vocab_file is not None:
|
17 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
TTS/TTS/tts/layers/xtts/gpt.py
CHANGED
@@ -172,7 +172,7 @@ class GPT(nn.Module):
|
|
172 |
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
|
173 |
}
|
174 |
|
175 |
-
def init_gpt_for_inference(self, kv_cache=True):
|
176 |
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
|
177 |
gpt_config = GPT2Config(
|
178 |
vocab_size=self.max_mel_tokens,
|
@@ -195,6 +195,17 @@ class GPT(nn.Module):
|
|
195 |
)
|
196 |
self.gpt.wte = self.mel_embedding
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def set_inputs_and_targets(self, input, start_token, stop_token):
|
199 |
inp = F.pad(input, (1, 0), value=start_token)
|
200 |
tar = F.pad(input, (0, 1), value=stop_token)
|
@@ -543,3 +554,14 @@ class GPT(nn.Module):
|
|
543 |
if "return_dict_in_generate" in hf_generate_kwargs:
|
544 |
return gen.sequences[:, gpt_inputs.shape[1] :], gen
|
545 |
return gen[:, gpt_inputs.shape[1] :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
|
173 |
}
|
174 |
|
175 |
+
def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False):
|
176 |
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
|
177 |
gpt_config = GPT2Config(
|
178 |
vocab_size=self.max_mel_tokens,
|
|
|
195 |
)
|
196 |
self.gpt.wte = self.mel_embedding
|
197 |
|
198 |
+
if use_deepspeed:
|
199 |
+
import deepspeed
|
200 |
+
self.ds_engine = deepspeed.init_inference(
|
201 |
+
model=self.gpt_inference.half(), # Transformers models
|
202 |
+
mp_size=1, # Number of GPU
|
203 |
+
dtype=torch.float32, # desired data type of output
|
204 |
+
replace_method="auto", # Lets DS autmatically identify the layer to replace
|
205 |
+
replace_with_kernel_inject=True, # replace the model with the kernel injector
|
206 |
+
)
|
207 |
+
self.gpt_inference = self.ds_engine.module.eval()
|
208 |
+
|
209 |
def set_inputs_and_targets(self, input, start_token, stop_token):
|
210 |
inp = F.pad(input, (1, 0), value=start_token)
|
211 |
tar = F.pad(input, (0, 1), value=stop_token)
|
|
|
554 |
if "return_dict_in_generate" in hf_generate_kwargs:
|
555 |
return gen.sequences[:, gpt_inputs.shape[1] :], gen
|
556 |
return gen[:, gpt_inputs.shape[1] :]
|
557 |
+
|
558 |
+
def get_generator(self, fake_inputs, **hf_generate_kwargs):
|
559 |
+
return self.gpt_inference.generate_stream(
|
560 |
+
fake_inputs,
|
561 |
+
bos_token_id=self.start_audio_token,
|
562 |
+
pad_token_id=self.stop_audio_token,
|
563 |
+
eos_token_id=self.stop_audio_token,
|
564 |
+
max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens,
|
565 |
+
do_stream=True,
|
566 |
+
**hf_generate_kwargs,
|
567 |
+
)
|
TTS/TTS/tts/layers/xtts/gpt_encoder_eren.py
DELETED
@@ -1,658 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel
|
7 |
-
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
8 |
-
|
9 |
-
|
10 |
-
def null_position_embeddings(range, dim):
|
11 |
-
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
12 |
-
|
13 |
-
|
14 |
-
class GPT2InferenceModel(GPT2PreTrainedModel):
|
15 |
-
"""Override GPT2LMHeadModel to allow for prefix conditioning."""
|
16 |
-
|
17 |
-
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
|
18 |
-
super().__init__(config)
|
19 |
-
self.transformer = gpt
|
20 |
-
self.pos_embedding = pos_emb
|
21 |
-
self.embeddings = embeddings
|
22 |
-
self.final_norm = norm
|
23 |
-
self.lm_head = nn.Sequential(norm, linear)
|
24 |
-
self.kv_cache = kv_cache
|
25 |
-
|
26 |
-
def store_prefix_emb(self, prefix_emb):
|
27 |
-
self.cached_prefix_emb = prefix_emb
|
28 |
-
|
29 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
30 |
-
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
31 |
-
if not self.kv_cache:
|
32 |
-
past_key_values = None
|
33 |
-
|
34 |
-
# only last token for inputs_ids if past is defined in kwargs
|
35 |
-
if past_key_values is not None:
|
36 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
37 |
-
if token_type_ids is not None:
|
38 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
39 |
-
|
40 |
-
attention_mask = kwargs.get("attention_mask", None)
|
41 |
-
position_ids = kwargs.get("position_ids", None)
|
42 |
-
|
43 |
-
if attention_mask is not None and position_ids is None:
|
44 |
-
# create position_ids on the fly for batch generation
|
45 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
46 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
47 |
-
if past_key_values is not None:
|
48 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
49 |
-
else:
|
50 |
-
position_ids = None
|
51 |
-
return {
|
52 |
-
"input_ids": input_ids,
|
53 |
-
"past_key_values": past_key_values,
|
54 |
-
"use_cache": kwargs.get("use_cache"),
|
55 |
-
"position_ids": position_ids,
|
56 |
-
"attention_mask": attention_mask,
|
57 |
-
"token_type_ids": token_type_ids,
|
58 |
-
}
|
59 |
-
|
60 |
-
def forward(
|
61 |
-
self,
|
62 |
-
input_ids=None,
|
63 |
-
past_key_values=None,
|
64 |
-
attention_mask=None,
|
65 |
-
token_type_ids=None,
|
66 |
-
position_ids=None,
|
67 |
-
head_mask=None,
|
68 |
-
inputs_embeds=None,
|
69 |
-
encoder_hidden_states=None,
|
70 |
-
encoder_attention_mask=None,
|
71 |
-
labels=None,
|
72 |
-
use_cache=None,
|
73 |
-
output_attentions=None,
|
74 |
-
output_hidden_states=None,
|
75 |
-
return_dict=None,
|
76 |
-
):
|
77 |
-
assert self.cached_prefix_emb is not None
|
78 |
-
assert inputs_embeds is None # Not supported by this inference model.
|
79 |
-
assert labels is None # Training not supported by this inference model.
|
80 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
81 |
-
|
82 |
-
# assert len(past_key_values) + len(input_ids) == attention_mask.shape[1]
|
83 |
-
|
84 |
-
# Create embedding
|
85 |
-
prefix_len = self.cached_prefix_emb.shape[1]
|
86 |
-
if input_ids.shape[1] != 1:
|
87 |
-
gen_inputs = input_ids[:, prefix_len:]
|
88 |
-
gen_emb = self.embeddings(gen_inputs)
|
89 |
-
gen_emb = gen_emb + self.pos_embedding(gen_emb)
|
90 |
-
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
|
91 |
-
prefix_emb = self.cached_prefix_emb.repeat_interleave(
|
92 |
-
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
|
93 |
-
)
|
94 |
-
else:
|
95 |
-
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
|
96 |
-
emb = torch.cat([prefix_emb, gen_emb], dim=1)
|
97 |
-
else:
|
98 |
-
emb = self.embeddings(input_ids)
|
99 |
-
emb = emb + self.pos_embedding.get_fixed_embedding(
|
100 |
-
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
|
101 |
-
)
|
102 |
-
transformer_outputs = self.transformer(
|
103 |
-
inputs_embeds=emb,
|
104 |
-
past_key_values=past_key_values,
|
105 |
-
attention_mask=attention_mask,
|
106 |
-
token_type_ids=token_type_ids,
|
107 |
-
position_ids=position_ids,
|
108 |
-
head_mask=head_mask,
|
109 |
-
encoder_hidden_states=encoder_hidden_states,
|
110 |
-
encoder_attention_mask=encoder_attention_mask,
|
111 |
-
use_cache=use_cache,
|
112 |
-
output_attentions=output_attentions,
|
113 |
-
output_hidden_states=output_hidden_states,
|
114 |
-
return_dict=return_dict,
|
115 |
-
)
|
116 |
-
hidden_states = transformer_outputs[0]
|
117 |
-
lm_logits = self.lm_head(hidden_states)
|
118 |
-
|
119 |
-
if not return_dict:
|
120 |
-
return (lm_logits,) + transformer_outputs[1:]
|
121 |
-
|
122 |
-
return CausalLMOutputWithCrossAttentions(
|
123 |
-
loss=None,
|
124 |
-
logits=lm_logits,
|
125 |
-
past_key_values=transformer_outputs.past_key_values,
|
126 |
-
hidden_states=transformer_outputs.hidden_states,
|
127 |
-
attentions=transformer_outputs.attentions,
|
128 |
-
cross_attentions=transformer_outputs.cross_attentions,
|
129 |
-
)
|
130 |
-
|
131 |
-
@staticmethod
|
132 |
-
def _reorder_cache(past, beam_idx):
|
133 |
-
"""
|
134 |
-
This function is used to re-order the :obj:`past_key_values` cache if
|
135 |
-
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
136 |
-
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
137 |
-
"""
|
138 |
-
return tuple(
|
139 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
140 |
-
for layer_past in past
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
class LearnedPositionEmbeddings(nn.Module):
|
145 |
-
def __init__(self, seq_len, model_channels, init_std=0.02, relative=False):
|
146 |
-
super().__init__()
|
147 |
-
self.emb = nn.Embedding(seq_len, model_channels)
|
148 |
-
nn.init.normal_(self.emb.weight, mean=0.0, std=init_std)
|
149 |
-
self.relative = relative
|
150 |
-
|
151 |
-
def forward(self, x):
|
152 |
-
seq_len = x.shape[1]
|
153 |
-
if self.relative:
|
154 |
-
start = torch.randint(seq_len, (1,), device=x.device).item()
|
155 |
-
positions = torch.arange(start, start + seq_len, device=x.device)
|
156 |
-
else:
|
157 |
-
positions = torch.arange(seq_len, device=x.device)
|
158 |
-
return self.emb(positions)
|
159 |
-
|
160 |
-
def get_fixed_embedding(self, ind, dev):
|
161 |
-
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
162 |
-
|
163 |
-
|
164 |
-
def init_gpt(layers, model_channels, heads, max_mel_seq_len, max_text_seq_len, max_prompt_len, checkpointing):
|
165 |
-
"""
|
166 |
-
Initializes a GPT-2 model and its position embeddings for a text-to-speech system.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
layers (int): Number of layers in the GPT-2 model.
|
170 |
-
model_channels (int): Dimension of the GPT-2 model.
|
171 |
-
heads (int): Number of heads in the GPT-2 model.
|
172 |
-
max_mel_seq_len (int): Maximum sequence length for the mel spectrogram.
|
173 |
-
max_text_seq_len (int): Maximum sequence length for the text.
|
174 |
-
max_prompt_len (int): Maximum length of the prompt.
|
175 |
-
checkpointing (bool): Whether to use gradient checkpointing.
|
176 |
-
|
177 |
-
Returns:
|
178 |
-
gpt (GPT2Model): GPT-2 model.
|
179 |
-
mel_pos_emb (LearnedPositionEmbeddings): Position embeddings for the mel spectrogram.
|
180 |
-
text_pos_emb (LearnedPositionEmbeddings): Position embeddings for the text.
|
181 |
-
"""
|
182 |
-
gpt_config = GPT2Config(
|
183 |
-
vocab_size=123,
|
184 |
-
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
185 |
-
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
186 |
-
n_embd=model_channels,
|
187 |
-
n_layer=layers,
|
188 |
-
n_head=heads,
|
189 |
-
gradient_checkpointing=checkpointing,
|
190 |
-
use_cache=not checkpointing,
|
191 |
-
)
|
192 |
-
gpt = GPT2Model(gpt_config)
|
193 |
-
|
194 |
-
del gpt.wpe
|
195 |
-
del gpt.wte
|
196 |
-
|
197 |
-
gpt.wpe = functools.partial(null_position_embeddings, dim=model_channels)
|
198 |
-
|
199 |
-
audio_pos_emb = (
|
200 |
-
LearnedPositionEmbeddings(max_mel_seq_len, model_channels)
|
201 |
-
if max_mel_seq_len != -1
|
202 |
-
else functools.partial(null_position_embeddings, dim=model_channels)
|
203 |
-
)
|
204 |
-
text_pos_emb = (
|
205 |
-
LearnedPositionEmbeddings(max_text_seq_len, model_channels)
|
206 |
-
if max_mel_seq_len != -1
|
207 |
-
else functools.partial(null_position_embeddings, dim=model_channels)
|
208 |
-
)
|
209 |
-
|
210 |
-
return gpt, audio_pos_emb, text_pos_emb
|
211 |
-
|
212 |
-
|
213 |
-
class XTTSGPTEncoder(nn.Module):
|
214 |
-
"""XTTS GPT Encoder model implementation.
|
215 |
-
Args:
|
216 |
-
start_text_token (int): Index of the start token in the text vocabulary.
|
217 |
-
stop_text_token (int): Index of the stop token in the text vocabulary.
|
218 |
-
n_layers (int): Number of layers in the GPT-2 model.
|
219 |
-
n_model_channels (int): Dimension of the GPT-2 model.
|
220 |
-
n_heads (int): Number of heads in the GPT-2 model.
|
221 |
-
max_text_tokens (int): Maximum number of text tokens.
|
222 |
-
max_audio_tokens (int): Maximum number of audio tokens.
|
223 |
-
max_prompt_tokens (int): Maximum number of prompt tokens.
|
224 |
-
audio_len_compression (int): Compression factor for the audio length.
|
225 |
-
number_text_tokens (int): Number of text tokens.
|
226 |
-
number_audio_codes (int): Number of audio codes.
|
227 |
-
start_mel_token (int): Index of the start token in the mel code vocabulary.
|
228 |
-
stop_mel_token (int): Index of the stop token in the mel code vocabulary.
|
229 |
-
checkpointing (bool): Whether or not to use gradient checkpointing at training.
|
230 |
-
"""
|
231 |
-
|
232 |
-
_inference_flag = False
|
233 |
-
|
234 |
-
def __init__(
|
235 |
-
self,
|
236 |
-
start_text_token=261,
|
237 |
-
stop_text_token=0,
|
238 |
-
n_layers=8,
|
239 |
-
n_model_channels=512,
|
240 |
-
n_heads=8,
|
241 |
-
max_text_tokens=120,
|
242 |
-
max_audio_tokens=250,
|
243 |
-
max_prompt_tokens=70,
|
244 |
-
audio_len_compression=1024,
|
245 |
-
number_text_tokens=256,
|
246 |
-
number_audio_codes=8194,
|
247 |
-
start_mel_token=8192,
|
248 |
-
stop_mel_token=8193,
|
249 |
-
checkpointing=True,
|
250 |
-
label_smoothing=0.0,
|
251 |
-
):
|
252 |
-
super().__init__()
|
253 |
-
|
254 |
-
self.label_smoothing = label_smoothing
|
255 |
-
self.number_text_tokens = number_text_tokens
|
256 |
-
self.start_text_token = start_text_token
|
257 |
-
self.stop_text_token = stop_text_token
|
258 |
-
self.number_audio_codes = number_audio_codes
|
259 |
-
self.start_mel_token = start_mel_token
|
260 |
-
self.stop_mel_token = stop_mel_token
|
261 |
-
self.start_prompt_token = start_mel_token
|
262 |
-
self.stop_prompt_token = stop_mel_token
|
263 |
-
self.n_layers = n_layers
|
264 |
-
self.n_heads = n_heads
|
265 |
-
self.n_model_channels = n_model_channels
|
266 |
-
self.max_audio_tokens = -1 if max_audio_tokens == -1 else max_audio_tokens + 2 + self.max_conditioning_inputs
|
267 |
-
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
|
268 |
-
self.max_prompt_tokens = max_prompt_tokens
|
269 |
-
self.audio_len_compression = audio_len_compression
|
270 |
-
|
271 |
-
# embedding layers
|
272 |
-
self.text_embedding = nn.Embedding(self.number_text_tokens, n_model_channels)
|
273 |
-
self.audio_embedding = nn.Embedding(self.number_audio_codes, n_model_channels)
|
274 |
-
self.prompt_embedding = nn.Embedding(self.number_audio_codes, n_model_channels)
|
275 |
-
self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, n_model_channels)
|
276 |
-
|
277 |
-
# initialize the GPT-2 model
|
278 |
-
(
|
279 |
-
self.gpt,
|
280 |
-
self.audio_pos_embedding,
|
281 |
-
self.text_pos_embedding,
|
282 |
-
) = init_gpt(
|
283 |
-
n_layers,
|
284 |
-
n_model_channels,
|
285 |
-
n_heads,
|
286 |
-
self.max_audio_tokens,
|
287 |
-
self.max_text_tokens,
|
288 |
-
self.max_prompt_tokens,
|
289 |
-
checkpointing,
|
290 |
-
)
|
291 |
-
|
292 |
-
# output layers
|
293 |
-
self.final_norm = nn.LayerNorm(n_model_channels)
|
294 |
-
self.text_head = nn.Linear(n_model_channels, self.number_text_tokens)
|
295 |
-
self.mel_head = nn.Linear(n_model_channels, self.number_audio_codes)
|
296 |
-
|
297 |
-
def get_grad_norm_parameter_groups(self):
|
298 |
-
return {
|
299 |
-
"conditioning_encoder": list(self.conditioning_encoder.parameters()),
|
300 |
-
"gpt": list(self.gpt.parameters()),
|
301 |
-
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
|
302 |
-
}
|
303 |
-
|
304 |
-
def init_model_for_inference(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False):
|
305 |
-
self._inference_flag = True
|
306 |
-
seq_length = self.max_prompt_tokens + self.max_audio_tokens + self.max_text_tokens
|
307 |
-
gpt_config = GPT2Config(
|
308 |
-
vocab_size=self.max_audio_tokens,
|
309 |
-
n_positions=seq_length,
|
310 |
-
n_ctx=seq_length,
|
311 |
-
n_embd=self.n_model_channels,
|
312 |
-
n_layer=self.n_layers,
|
313 |
-
n_head=self.n_heads,
|
314 |
-
gradient_checkpointing=False,
|
315 |
-
use_cache=True,
|
316 |
-
)
|
317 |
-
self.inference_model = GPT2InferenceModel(
|
318 |
-
gpt_config,
|
319 |
-
self.gpt,
|
320 |
-
self.audio_pos_embedding,
|
321 |
-
self.audio_embedding,
|
322 |
-
self.final_norm,
|
323 |
-
self.mel_head,
|
324 |
-
kv_cache=kv_cache,
|
325 |
-
)
|
326 |
-
self.gpt.wte = self.audio_embedding
|
327 |
-
|
328 |
-
def set_inputs_and_targets(self, input, start_token, stop_token):
|
329 |
-
inp = F.pad(input, (1, 0), value=start_token)
|
330 |
-
tar = F.pad(input, (0, 1), value=stop_token)
|
331 |
-
return inp, tar
|
332 |
-
|
333 |
-
def set_audio_tokens_padding(self, audio_tokens, audio_token_lens):
|
334 |
-
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
335 |
-
for b in range(len(audio_token_lens)):
|
336 |
-
actual_end = audio_token_lens[b]
|
337 |
-
if actual_end < audio_tokens.shape[-1]:
|
338 |
-
audio_tokens[b, actual_end:] = self.stop_mel_token
|
339 |
-
return audio_tokens
|
340 |
-
|
341 |
-
def get_logits(
|
342 |
-
self,
|
343 |
-
speech_conditioning_inputs,
|
344 |
-
first_inputs,
|
345 |
-
first_head,
|
346 |
-
second_inputs=None,
|
347 |
-
second_head=None,
|
348 |
-
prompt=None,
|
349 |
-
get_attns=False,
|
350 |
-
return_latent=False,
|
351 |
-
attn_mask_text=None,
|
352 |
-
attn_mask_mel=None,
|
353 |
-
):
|
354 |
-
if prompt is not None and speech_conditioning_inputs is not None:
|
355 |
-
offset = speech_conditioning_inputs.shape[1] + prompt.shape[1]
|
356 |
-
if second_inputs is not None:
|
357 |
-
emb = torch.cat(
|
358 |
-
[speech_conditioning_inputs, prompt, first_inputs, second_inputs],
|
359 |
-
dim=1,
|
360 |
-
)
|
361 |
-
else:
|
362 |
-
emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1)
|
363 |
-
elif speech_conditioning_inputs is not None:
|
364 |
-
offset = speech_conditioning_inputs.shape[1]
|
365 |
-
if second_inputs is not None:
|
366 |
-
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
367 |
-
else:
|
368 |
-
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
369 |
-
elif prompt is not None:
|
370 |
-
offset = prompt.shape[1]
|
371 |
-
if second_inputs is not None:
|
372 |
-
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1)
|
373 |
-
else:
|
374 |
-
emb = torch.cat([prompt, first_inputs], dim=1)
|
375 |
-
|
376 |
-
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
377 |
-
attn_mask = None
|
378 |
-
if attn_mask_text is not None:
|
379 |
-
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1)
|
380 |
-
if prompt is not None:
|
381 |
-
attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device)
|
382 |
-
attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1)
|
383 |
-
|
384 |
-
gpt_out = self.gpt(
|
385 |
-
inputs_embeds=emb,
|
386 |
-
return_dict=True,
|
387 |
-
output_attentions=get_attns,
|
388 |
-
attention_mask=attn_mask,
|
389 |
-
)
|
390 |
-
|
391 |
-
if get_attns:
|
392 |
-
return gpt_out.attentions
|
393 |
-
|
394 |
-
enc = gpt_out.last_hidden_state[:, offset:]
|
395 |
-
enc = self.final_norm(enc)
|
396 |
-
|
397 |
-
if return_latent:
|
398 |
-
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :]
|
399 |
-
|
400 |
-
first_logits = enc[:, : first_inputs.shape[1]]
|
401 |
-
first_logits = first_head(first_logits)
|
402 |
-
first_logits = first_logits.permute(0, 2, 1)
|
403 |
-
if second_inputs is not None:
|
404 |
-
second_logits = enc[:, -second_inputs.shape[1] :]
|
405 |
-
second_logits = second_head(second_logits)
|
406 |
-
second_logits = second_logits.permute(0, 2, 1)
|
407 |
-
return first_logits, second_logits
|
408 |
-
else:
|
409 |
-
return first_logits
|
410 |
-
|
411 |
-
def get_conditioning(self, speech_conditioning_input):
|
412 |
-
speech_conditioning_input = (
|
413 |
-
speech_conditioning_input.unsqueeze(1)
|
414 |
-
if len(speech_conditioning_input.shape) == 3
|
415 |
-
else speech_conditioning_input
|
416 |
-
)
|
417 |
-
conds = []
|
418 |
-
for j in range(speech_conditioning_input.shape[1]):
|
419 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
420 |
-
conds = torch.stack(conds, dim=1)
|
421 |
-
conds = conds.mean(dim=1)
|
422 |
-
return conds
|
423 |
-
|
424 |
-
def get_prompts(self, prompt_codes):
|
425 |
-
prompt = F.pad(prompt_codes, (1, 0), value=self.start_prompt_token)
|
426 |
-
prompt = F.pad(prompt_codes, (0, 1), value=self.stop_prompt_token)
|
427 |
-
return prompt
|
428 |
-
|
429 |
-
def forward(
|
430 |
-
self,
|
431 |
-
text_inputs,
|
432 |
-
text_lengths,
|
433 |
-
audio_codes,
|
434 |
-
wav_lengths,
|
435 |
-
prompt_codes,
|
436 |
-
return_attentions=False,
|
437 |
-
return_latent=False,
|
438 |
-
):
|
439 |
-
max_text_len = text_lengths.max()
|
440 |
-
|
441 |
-
# Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values
|
442 |
-
# Like [..., 186, 45, 45, 83] where actually it should end with 186.
|
443 |
-
# We take last 3 codes to prevent abrupt ending of the audio.
|
444 |
-
# TODO: This is might need some testing.
|
445 |
-
mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3
|
446 |
-
|
447 |
-
# If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes.
|
448 |
-
max_mel_len = mel_lengths.max()
|
449 |
-
|
450 |
-
if max_mel_len > audio_codes.shape[-1]:
|
451 |
-
audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1]))
|
452 |
-
|
453 |
-
# silence aware lengths, skip the silence tokens at the end of the mel codes.
|
454 |
-
silence = True
|
455 |
-
for idx, l in enumerate(mel_lengths):
|
456 |
-
length = l.item()
|
457 |
-
while silence:
|
458 |
-
if audio_codes[idx, length - 1] != 83:
|
459 |
-
break
|
460 |
-
length -= 1
|
461 |
-
mel_lengths[idx] = length
|
462 |
-
|
463 |
-
# Lovely assertions
|
464 |
-
assert (
|
465 |
-
max_mel_len <= audio_codes.shape[-1]
|
466 |
-
), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})"
|
467 |
-
assert (
|
468 |
-
max_text_len <= text_inputs.shape[-1]
|
469 |
-
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})"
|
470 |
-
|
471 |
-
# Append stop token to text inputs
|
472 |
-
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)
|
473 |
-
|
474 |
-
# Append silence token to mel codes
|
475 |
-
audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token)
|
476 |
-
|
477 |
-
# Pad mel codes with STOP_MEL_TOKEN
|
478 |
-
audio_codes = self.set_mel_padding(audio_codes, mel_lengths)
|
479 |
-
|
480 |
-
# Compute speech conditioning input
|
481 |
-
conds = None
|
482 |
-
if speech_conditioning_input is not None:
|
483 |
-
if not return_latent:
|
484 |
-
# Compute speech conditioning input
|
485 |
-
speech_conditioning_input = (
|
486 |
-
speech_conditioning_input.unsqueeze(1)
|
487 |
-
if len(speech_conditioning_input.shape) == 3
|
488 |
-
else speech_conditioning_input
|
489 |
-
)
|
490 |
-
|
491 |
-
conds = []
|
492 |
-
for j in range(speech_conditioning_input.shape[1]):
|
493 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
494 |
-
conds = torch.stack(conds, dim=1)
|
495 |
-
if self.average_conditioning_embeddings:
|
496 |
-
conds = conds.mean(dim=1).unsqueeze(1)
|
497 |
-
else:
|
498 |
-
# already computed
|
499 |
-
conds = speech_conditioning_input.unsqueeze(1)
|
500 |
-
|
501 |
-
# Build input and target tensors
|
502 |
-
# Prepend start token to inputs and append stop token to targets
|
503 |
-
text_inputs, _ = self.set_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
504 |
-
audio_codes, _ = self.set_inputs_and_targets(audio_codes, self.start_mel_token, self.stop_mel_token)
|
505 |
-
|
506 |
-
# Set attn_mask
|
507 |
-
attn_mask_text = None
|
508 |
-
attn_mask_mel = None
|
509 |
-
if not return_latent:
|
510 |
-
attn_mask_text = torch.ones(
|
511 |
-
text_inputs.shape[0],
|
512 |
-
text_inputs.shape[1],
|
513 |
-
dtype=torch.bool,
|
514 |
-
device=text_inputs.device,
|
515 |
-
)
|
516 |
-
attn_mask_mel = torch.ones(
|
517 |
-
audio_codes.shape[0],
|
518 |
-
audio_codes.shape[1],
|
519 |
-
dtype=torch.bool,
|
520 |
-
device=audio_codes.device,
|
521 |
-
)
|
522 |
-
|
523 |
-
for idx, l in enumerate(text_lengths):
|
524 |
-
attn_mask_text[idx, l + 1 :] = 0.0
|
525 |
-
|
526 |
-
for idx, l in enumerate(mel_lengths):
|
527 |
-
attn_mask_mel[idx, l + 1 :] = 0.0
|
528 |
-
|
529 |
-
# Compute text embeddings + positional embeddings
|
530 |
-
# print(" > text input latent:", text_inputs)
|
531 |
-
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
532 |
-
|
533 |
-
# Compute mel embeddings + positional embeddings
|
534 |
-
audio_emb = self.audio_embedding(audio_codes) + self.audio_embedding(audio_codes)
|
535 |
-
|
536 |
-
# Compute prompt embeddings + positional embeddings
|
537 |
-
prompt = self.get_prompts(prompt_codes)
|
538 |
-
|
539 |
-
# prompt_emb = self.audio_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach()
|
540 |
-
prompt_emb = self.prompt_embedding(prompt) + self.prompt_pos_embedding(prompt)
|
541 |
-
|
542 |
-
# dropout prompt embeddings
|
543 |
-
prompt_emb = F.dropout(prompt_emb, p=0.1, training=self.training)
|
544 |
-
|
545 |
-
# Get logits
|
546 |
-
sub = -4 # don't ask me why 😄
|
547 |
-
if self.training:
|
548 |
-
sub = -1
|
549 |
-
_, audio_logits = self.get_logits(
|
550 |
-
conds,
|
551 |
-
text_emb,
|
552 |
-
self.text_head,
|
553 |
-
audio_emb,
|
554 |
-
self.mel_head,
|
555 |
-
prompt=prompt_emb,
|
556 |
-
get_attns=return_attentions,
|
557 |
-
return_latent=return_latent,
|
558 |
-
attn_mask_text=attn_mask_text,
|
559 |
-
attn_mask_mel=attn_mask_mel,
|
560 |
-
)
|
561 |
-
return audio_logits[:, :sub] # sub to prevent bla.
|
562 |
-
|
563 |
-
def compute_embeddings(
|
564 |
-
self,
|
565 |
-
speech_conditioning_latent,
|
566 |
-
text_inputs,
|
567 |
-
input_tokens=None,
|
568 |
-
prompt_codes=None,
|
569 |
-
pad_input_text=False,
|
570 |
-
):
|
571 |
-
"""Compute all the embeddings needed for inference."""
|
572 |
-
if pad_input_text and text_inputs.shape[1] < 250:
|
573 |
-
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
574 |
-
else:
|
575 |
-
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
576 |
-
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
577 |
-
|
578 |
-
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
579 |
-
|
580 |
-
print(" > Text inputs:", text_inputs)
|
581 |
-
if prompt_codes is not None:
|
582 |
-
prompt_codes = self.get_prompts(prompt_codes)
|
583 |
-
# prompt_emb = self.audio_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes)
|
584 |
-
prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes)
|
585 |
-
|
586 |
-
print(" > Prompt inputs:", prompt_codes)
|
587 |
-
print(" > Prompt inputs shape:", prompt_codes.shape)
|
588 |
-
emb = torch.cat([prompt_emb, emb], dim=1)
|
589 |
-
|
590 |
-
if speech_conditioning_latent is not None:
|
591 |
-
conds = speech_conditioning_latent.unsqueeze(1)
|
592 |
-
emb = torch.cat([conds, emb], dim=1)
|
593 |
-
|
594 |
-
self.inference_model.store_prefix_emb(emb)
|
595 |
-
|
596 |
-
fake_inputs = torch.full(
|
597 |
-
(
|
598 |
-
emb.shape[0],
|
599 |
-
emb.shape[1] + 1, # +1 for the start_mel_token
|
600 |
-
),
|
601 |
-
fill_value=1,
|
602 |
-
dtype=torch.long,
|
603 |
-
device=text_inputs.device,
|
604 |
-
)
|
605 |
-
fake_inputs[:, -1] = self.start_mel_token
|
606 |
-
|
607 |
-
if input_tokens is not None:
|
608 |
-
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
609 |
-
return fake_inputs
|
610 |
-
|
611 |
-
def inference(
|
612 |
-
self,
|
613 |
-
text_inputs,
|
614 |
-
input_tokens=None,
|
615 |
-
prompt_codes=None,
|
616 |
-
pad_input_text=False,
|
617 |
-
**hf_generate_kwargs,
|
618 |
-
):
|
619 |
-
if pad_input_text and text_inputs.shape[1] < 250:
|
620 |
-
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
621 |
-
else:
|
622 |
-
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
623 |
-
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
624 |
-
|
625 |
-
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
626 |
-
|
627 |
-
if prompt_codes is not None:
|
628 |
-
prompt_codes = self.get_prompts(prompt_codes)
|
629 |
-
prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes)
|
630 |
-
emb = torch.cat([prompt_emb, emb], dim=1)
|
631 |
-
|
632 |
-
self.inference_model.store_prefix_emb(emb)
|
633 |
-
|
634 |
-
fake_inputs = torch.full(
|
635 |
-
(
|
636 |
-
emb.shape[0],
|
637 |
-
emb.shape[1] + 1, # +1 for the start_mel_token
|
638 |
-
),
|
639 |
-
fill_value=1,
|
640 |
-
dtype=torch.long,
|
641 |
-
device=text_inputs.device,
|
642 |
-
)
|
643 |
-
fake_inputs[:, -1] = self.start_mel_token
|
644 |
-
|
645 |
-
if input_tokens is not None:
|
646 |
-
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
647 |
-
|
648 |
-
gen = self.inference_model.generate(
|
649 |
-
fake_inputs,
|
650 |
-
bos_token_id=self.start_mel_token,
|
651 |
-
pad_token_id=self.stop_mel_token,
|
652 |
-
eos_token_id=self.stop_mel_token,
|
653 |
-
max_length=self.max_audio_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens,
|
654 |
-
**hf_generate_kwargs,
|
655 |
-
)
|
656 |
-
if "return_dict_in_generate" in hf_generate_kwargs:
|
657 |
-
return gen.sequences[:, fake_inputs.shape[1] :], gen
|
658 |
-
return gen[:, fake_inputs.shape[1] :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TTS/TTS/tts/layers/xtts/gpt_encoder_old.py
DELETED
@@ -1,1057 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
import math
|
3 |
-
import random
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
|
9 |
-
try:
|
10 |
-
import deepspeed
|
11 |
-
from deepspeed.ops.transformer.inference import DeepSpeedTransformerInferenceKernel
|
12 |
-
except ImportError:
|
13 |
-
pass
|
14 |
-
|
15 |
-
import dlas.codes.torch_intermediary as ml
|
16 |
-
from dlas.codes.models.arch_util import AttentionBlock
|
17 |
-
from dlas.codes.trainer.networks import register_model
|
18 |
-
from dlas.codes.utils.transformers.stream_generator import init_stream_support
|
19 |
-
from dlas.codes.utils.util import opt_get
|
20 |
-
from transformers import GPT2Config, GPT2PreTrainedModel
|
21 |
-
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
22 |
-
|
23 |
-
init_stream_support()
|
24 |
-
|
25 |
-
|
26 |
-
def null_position_embeddings(range, dim):
|
27 |
-
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
28 |
-
|
29 |
-
|
30 |
-
class ResBlock(nn.Module):
|
31 |
-
"""
|
32 |
-
Basic residual convolutional block that uses GroupNorm.
|
33 |
-
"""
|
34 |
-
|
35 |
-
def __init__(self, chan):
|
36 |
-
super().__init__()
|
37 |
-
self.net = nn.Sequential(
|
38 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
39 |
-
nn.GroupNorm(chan // 8, chan),
|
40 |
-
nn.ReLU(),
|
41 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
42 |
-
nn.GroupNorm(chan // 8, chan),
|
43 |
-
)
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
return F.relu(self.net(x) + x)
|
47 |
-
|
48 |
-
|
49 |
-
class GPT2InferenceModel(GPT2PreTrainedModel):
|
50 |
-
"""Override GPT2LMHeadModel to allow for prefix conditioning."""
|
51 |
-
|
52 |
-
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
|
53 |
-
super().__init__(config)
|
54 |
-
self.transformer = gpt
|
55 |
-
self.pos_embedding = pos_emb
|
56 |
-
self.embeddings = embeddings
|
57 |
-
self.final_norm = norm
|
58 |
-
self.lm_head = nn.Sequential(norm, linear)
|
59 |
-
self.kv_cache = kv_cache
|
60 |
-
|
61 |
-
def store_prefix_emb(self, prefix_emb):
|
62 |
-
self.cached_prefix_emb = prefix_emb
|
63 |
-
|
64 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
65 |
-
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
66 |
-
if not self.kv_cache:
|
67 |
-
past_key_values = None
|
68 |
-
|
69 |
-
# only last token for inputs_ids if past is defined in kwargs
|
70 |
-
if past_key_values is not None:
|
71 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
72 |
-
if token_type_ids is not None:
|
73 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
74 |
-
|
75 |
-
attention_mask = kwargs.get("attention_mask", None)
|
76 |
-
position_ids = kwargs.get("position_ids", None)
|
77 |
-
|
78 |
-
if attention_mask is not None and position_ids is None:
|
79 |
-
# create position_ids on the fly for batch generation
|
80 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
81 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
82 |
-
if past_key_values is not None:
|
83 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
84 |
-
else:
|
85 |
-
position_ids = None
|
86 |
-
return {
|
87 |
-
"input_ids": input_ids,
|
88 |
-
"past_key_values": past_key_values,
|
89 |
-
"use_cache": kwargs.get("use_cache"),
|
90 |
-
"position_ids": position_ids,
|
91 |
-
"attention_mask": attention_mask,
|
92 |
-
"token_type_ids": token_type_ids,
|
93 |
-
}
|
94 |
-
|
95 |
-
def forward(
|
96 |
-
self,
|
97 |
-
input_ids=None,
|
98 |
-
past_key_values=None,
|
99 |
-
attention_mask=None,
|
100 |
-
token_type_ids=None,
|
101 |
-
position_ids=None,
|
102 |
-
head_mask=None,
|
103 |
-
inputs_embeds=None,
|
104 |
-
encoder_hidden_states=None,
|
105 |
-
encoder_attention_mask=None,
|
106 |
-
labels=None,
|
107 |
-
use_cache=None,
|
108 |
-
output_attentions=None,
|
109 |
-
output_hidden_states=None,
|
110 |
-
return_dict=None,
|
111 |
-
):
|
112 |
-
assert self.cached_prefix_emb is not None
|
113 |
-
assert inputs_embeds is None # Not supported by this inference model.
|
114 |
-
assert labels is None # Training not supported by this inference model.
|
115 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
116 |
-
|
117 |
-
# assert len(past_key_values) + len(input_ids) == attention_mask.shape[1]
|
118 |
-
|
119 |
-
# Create embedding
|
120 |
-
prefix_len = self.cached_prefix_emb.shape[1]
|
121 |
-
if input_ids.shape[1] != 1:
|
122 |
-
gen_inputs = input_ids[:, prefix_len:]
|
123 |
-
gen_emb = self.embeddings(gen_inputs)
|
124 |
-
gen_emb = gen_emb + self.pos_embedding(gen_emb)
|
125 |
-
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
|
126 |
-
prefix_emb = self.cached_prefix_emb.repeat_interleave(
|
127 |
-
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
|
128 |
-
)
|
129 |
-
else:
|
130 |
-
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
|
131 |
-
emb = torch.cat([prefix_emb, gen_emb], dim=1)
|
132 |
-
else:
|
133 |
-
emb = self.embeddings(input_ids)
|
134 |
-
emb = emb + self.pos_embedding.get_fixed_embedding(
|
135 |
-
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
|
136 |
-
)
|
137 |
-
transformer_outputs = self.transformer(
|
138 |
-
inputs_embeds=emb,
|
139 |
-
past_key_values=past_key_values,
|
140 |
-
attention_mask=attention_mask,
|
141 |
-
token_type_ids=token_type_ids,
|
142 |
-
position_ids=position_ids,
|
143 |
-
head_mask=head_mask,
|
144 |
-
encoder_hidden_states=encoder_hidden_states,
|
145 |
-
encoder_attention_mask=encoder_attention_mask,
|
146 |
-
use_cache=use_cache,
|
147 |
-
output_attentions=output_attentions,
|
148 |
-
output_hidden_states=output_hidden_states,
|
149 |
-
return_dict=return_dict,
|
150 |
-
)
|
151 |
-
hidden_states = transformer_outputs[0]
|
152 |
-
lm_logits = self.lm_head(hidden_states)
|
153 |
-
|
154 |
-
if not return_dict:
|
155 |
-
return (lm_logits,) + transformer_outputs[1:]
|
156 |
-
|
157 |
-
return CausalLMOutputWithCrossAttentions(
|
158 |
-
loss=None,
|
159 |
-
logits=lm_logits,
|
160 |
-
past_key_values=transformer_outputs.past_key_values,
|
161 |
-
hidden_states=transformer_outputs.hidden_states,
|
162 |
-
attentions=transformer_outputs.attentions,
|
163 |
-
cross_attentions=transformer_outputs.cross_attentions,
|
164 |
-
)
|
165 |
-
|
166 |
-
@staticmethod
|
167 |
-
def _reorder_cache(past, beam_idx):
|
168 |
-
"""
|
169 |
-
This function is used to re-order the :obj:`past_key_values` cache if
|
170 |
-
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
171 |
-
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
172 |
-
"""
|
173 |
-
return tuple(
|
174 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
175 |
-
for layer_past in past
|
176 |
-
)
|
177 |
-
|
178 |
-
|
179 |
-
class ConditioningEncoder(nn.Module):
|
180 |
-
def __init__(
|
181 |
-
self,
|
182 |
-
spec_dim,
|
183 |
-
embedding_dim,
|
184 |
-
attn_blocks=6,
|
185 |
-
num_attn_heads=4,
|
186 |
-
do_checkpointing=False,
|
187 |
-
mean=False,
|
188 |
-
):
|
189 |
-
super().__init__()
|
190 |
-
attn = []
|
191 |
-
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
192 |
-
for a in range(attn_blocks):
|
193 |
-
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
194 |
-
self.attn = nn.Sequential(*attn)
|
195 |
-
self.dim = embedding_dim
|
196 |
-
self.do_checkpointing = do_checkpointing
|
197 |
-
self.mean = mean
|
198 |
-
|
199 |
-
def forward(self, x):
|
200 |
-
h = self.init(x)
|
201 |
-
h = self.attn(h)
|
202 |
-
if self.mean:
|
203 |
-
return h.mean(dim=2)
|
204 |
-
else:
|
205 |
-
return h[:, :, 0]
|
206 |
-
|
207 |
-
|
208 |
-
class LearnedPositionEmbeddings(nn.Module):
|
209 |
-
def __init__(self, seq_len, model_dim, init=0.02, relative=False):
|
210 |
-
super().__init__()
|
211 |
-
# nn.Embedding
|
212 |
-
self.emb = torch.nn.Embedding(seq_len, model_dim)
|
213 |
-
# Initializing this way is standard for GPT-2
|
214 |
-
self.emb.weight.data.normal_(mean=0.0, std=init)
|
215 |
-
self.relative = relative
|
216 |
-
self.seq_len = seq_len
|
217 |
-
|
218 |
-
def forward(self, x):
|
219 |
-
sl = x.shape[1]
|
220 |
-
if self.relative:
|
221 |
-
start = random.randint(sl, self.seq_len) - sl
|
222 |
-
return self.emb(torch.arange(start, start + sl, device=x.device))
|
223 |
-
else:
|
224 |
-
return self.emb(torch.arange(0, sl, device=x.device))
|
225 |
-
|
226 |
-
def get_fixed_embedding(self, ind, dev):
|
227 |
-
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
228 |
-
|
229 |
-
|
230 |
-
def build_hf_gpt_transformer(
|
231 |
-
layers,
|
232 |
-
model_dim,
|
233 |
-
heads,
|
234 |
-
max_mel_seq_len,
|
235 |
-
max_text_seq_len,
|
236 |
-
max_prompt_len,
|
237 |
-
checkpointing,
|
238 |
-
):
|
239 |
-
"""
|
240 |
-
GPT-2 implemented by the HuggingFace library.
|
241 |
-
"""
|
242 |
-
from transformers import GPT2Config, GPT2Model
|
243 |
-
|
244 |
-
gpt_config = GPT2Config(
|
245 |
-
vocab_size=256, # Unused.
|
246 |
-
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
247 |
-
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
248 |
-
n_embd=model_dim,
|
249 |
-
n_layer=layers,
|
250 |
-
n_head=heads,
|
251 |
-
gradient_checkpointing=checkpointing,
|
252 |
-
use_cache=not checkpointing,
|
253 |
-
)
|
254 |
-
gpt = GPT2Model(gpt_config)
|
255 |
-
# Override the built in positional embeddings
|
256 |
-
del gpt.wpe
|
257 |
-
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
|
258 |
-
# Built-in token embeddings are unused.
|
259 |
-
del gpt.wte
|
260 |
-
|
261 |
-
# def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
262 |
-
# attn_output = torch.nn.functional.scaled_dot_product_attention(
|
263 |
-
# query, key, value, dropout_p=self.attn_dropout.p, is_causal=True
|
264 |
-
# )
|
265 |
-
# return attn_output, None
|
266 |
-
|
267 |
-
# for i in range(len(gpt.h)):
|
268 |
-
# gpt.h[i].attn._attn = types.MethodType(
|
269 |
-
# _attn, gpt.h[i].attn
|
270 |
-
# )
|
271 |
-
|
272 |
-
mel_pos_emb = (
|
273 |
-
LearnedPositionEmbeddings(max_mel_seq_len, model_dim)
|
274 |
-
if max_mel_seq_len != -1
|
275 |
-
else functools.partial(null_position_embeddings, dim=model_dim)
|
276 |
-
)
|
277 |
-
text_pos_emb = (
|
278 |
-
LearnedPositionEmbeddings(max_text_seq_len, model_dim)
|
279 |
-
if max_mel_seq_len != -1
|
280 |
-
else functools.partial(null_position_embeddings, dim=model_dim)
|
281 |
-
)
|
282 |
-
# gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True)
|
283 |
-
return gpt, mel_pos_emb, text_pos_emb, None, None
|
284 |
-
|
285 |
-
|
286 |
-
class MelEncoder(nn.Module):
|
287 |
-
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
288 |
-
super().__init__()
|
289 |
-
self.channels = channels
|
290 |
-
self.encoder = nn.Sequential(
|
291 |
-
nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
|
292 |
-
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
|
293 |
-
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
|
294 |
-
nn.GroupNorm(channels // 16, channels // 2),
|
295 |
-
nn.ReLU(),
|
296 |
-
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
|
297 |
-
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
|
298 |
-
nn.GroupNorm(channels // 8, channels),
|
299 |
-
nn.ReLU(),
|
300 |
-
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
301 |
-
)
|
302 |
-
self.reduction = 4
|
303 |
-
|
304 |
-
def forward(self, x):
|
305 |
-
for e in self.encoder:
|
306 |
-
x = e(x)
|
307 |
-
return x.permute(0, 2, 1)
|
308 |
-
|
309 |
-
|
310 |
-
class UnifiedVoice(nn.Module):
|
311 |
-
def __init__(
|
312 |
-
self,
|
313 |
-
start_text_token=261,
|
314 |
-
stop_text_token=0,
|
315 |
-
layers=8,
|
316 |
-
model_dim=512,
|
317 |
-
heads=8,
|
318 |
-
max_text_tokens=120,
|
319 |
-
max_mel_tokens=250,
|
320 |
-
max_prompt_tokens=70,
|
321 |
-
max_conditioning_inputs=1,
|
322 |
-
mel_length_compression=1024,
|
323 |
-
number_text_tokens=256,
|
324 |
-
number_mel_codes=8194,
|
325 |
-
start_mel_token=8192,
|
326 |
-
stop_mel_token=8193,
|
327 |
-
train_solo_embeddings=False,
|
328 |
-
use_mel_codes_as_input=True,
|
329 |
-
checkpointing=True,
|
330 |
-
average_conditioning_embeddings=False,
|
331 |
-
freeze_everything_but_position_embeddings=False,
|
332 |
-
freeze_conditioning_encoder=False,
|
333 |
-
tortoise_compat=True,
|
334 |
-
label_smoothing=0.0,
|
335 |
-
):
|
336 |
-
"""
|
337 |
-
Args:
|
338 |
-
layers: Number of layers in transformer stack.
|
339 |
-
model_dim: Operating dimensions of the transformer
|
340 |
-
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
341 |
-
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
342 |
-
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
343 |
-
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
344 |
-
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
345 |
-
number_text_tokens:
|
346 |
-
start_text_token:
|
347 |
-
stop_text_token:
|
348 |
-
number_mel_codes:
|
349 |
-
start_mel_token:
|
350 |
-
stop_mel_token:
|
351 |
-
train_solo_embeddings:
|
352 |
-
use_mel_codes_as_input:
|
353 |
-
checkpointing:
|
354 |
-
average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model.
|
355 |
-
"""
|
356 |
-
super().__init__()
|
357 |
-
|
358 |
-
self.label_smoothing = label_smoothing
|
359 |
-
self.number_text_tokens = number_text_tokens
|
360 |
-
self.start_text_token = start_text_token
|
361 |
-
self.stop_text_token = stop_text_token
|
362 |
-
self.number_mel_codes = number_mel_codes
|
363 |
-
self.start_mel_token = start_mel_token
|
364 |
-
self.stop_mel_token = stop_mel_token
|
365 |
-
self.start_prompt_token = start_mel_token
|
366 |
-
self.stop_prompt_token = stop_mel_token
|
367 |
-
self.layers = layers
|
368 |
-
self.heads = heads
|
369 |
-
self.model_dim = model_dim
|
370 |
-
self.max_conditioning_inputs = max_conditioning_inputs
|
371 |
-
self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs
|
372 |
-
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
|
373 |
-
self.max_prompt_tokens = max_prompt_tokens
|
374 |
-
self.mel_length_compression = mel_length_compression
|
375 |
-
# self.conditioning_encoder = ConditioningEncoder(
|
376 |
-
# 80, model_dim, num_attn_heads=heads
|
377 |
-
# )
|
378 |
-
self.average_conditioning_embeddings = average_conditioning_embeddings
|
379 |
-
self.tortoise_compat = tortoise_compat # credit to https://github.com/152334H/DL-Art-School/commit/ae80992817059acf6eef38a680efa5124cee570b
|
380 |
-
# nn.Embedding
|
381 |
-
self.text_embedding = ml.Embedding(self.number_text_tokens, model_dim)
|
382 |
-
if use_mel_codes_as_input:
|
383 |
-
# nn.Embedding
|
384 |
-
self.mel_embedding = ml.Embedding(self.number_mel_codes, model_dim)
|
385 |
-
else:
|
386 |
-
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
|
387 |
-
(
|
388 |
-
self.gpt,
|
389 |
-
self.mel_pos_embedding,
|
390 |
-
self.text_pos_embedding,
|
391 |
-
self.mel_layer_pos_embedding,
|
392 |
-
self.text_layer_pos_embedding,
|
393 |
-
) = build_hf_gpt_transformer(
|
394 |
-
layers,
|
395 |
-
model_dim,
|
396 |
-
heads,
|
397 |
-
self.max_mel_tokens,
|
398 |
-
self.max_text_tokens,
|
399 |
-
self.max_prompt_tokens,
|
400 |
-
checkpointing,
|
401 |
-
)
|
402 |
-
if train_solo_embeddings:
|
403 |
-
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
|
404 |
-
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
|
405 |
-
else:
|
406 |
-
self.mel_solo_embedding = 0
|
407 |
-
self.text_solo_embedding = 0
|
408 |
-
|
409 |
-
self.final_norm = nn.LayerNorm(model_dim)
|
410 |
-
self.text_head = ml.Linear(model_dim, self.number_text_tokens)
|
411 |
-
self.mel_head = ml.Linear(model_dim, self.number_mel_codes)
|
412 |
-
|
413 |
-
# Initialize the embeddings per the GPT-2 scheme
|
414 |
-
embeddings = [self.text_embedding]
|
415 |
-
if use_mel_codes_as_input:
|
416 |
-
embeddings.append(self.mel_embedding)
|
417 |
-
for module in embeddings:
|
418 |
-
module.weight.data.normal_(mean=0.0, std=0.02)
|
419 |
-
|
420 |
-
if freeze_conditioning_encoder:
|
421 |
-
print(" > Freezing conditioning encoder.")
|
422 |
-
for p in self.conditioning_encoder.parameters():
|
423 |
-
p.requires_grad = False
|
424 |
-
p.DO_NOT_TRAIN = True
|
425 |
-
|
426 |
-
if freeze_everything_but_position_embeddings:
|
427 |
-
for p in self.parameters():
|
428 |
-
p.requires_grad = False
|
429 |
-
p.DO_NOT_TRAIN = True
|
430 |
-
for m in [self.mel_pos_embedding, self.text_pos_embedding]:
|
431 |
-
for p in m.parameters():
|
432 |
-
del p.DO_NOT_TRAIN
|
433 |
-
p.requires_grad = True
|
434 |
-
|
435 |
-
def get_grad_norm_parameter_groups(self):
|
436 |
-
return {
|
437 |
-
"conditioning_encoder": list(self.conditioning_encoder.parameters()),
|
438 |
-
"gpt": list(self.gpt.parameters()),
|
439 |
-
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
|
440 |
-
}
|
441 |
-
|
442 |
-
def post_init_gpt2_config(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False):
|
443 |
-
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
|
444 |
-
gpt_config = GPT2Config(
|
445 |
-
vocab_size=self.max_mel_tokens,
|
446 |
-
n_positions=seq_length,
|
447 |
-
n_ctx=seq_length,
|
448 |
-
n_embd=self.model_dim,
|
449 |
-
n_layer=self.layers,
|
450 |
-
n_head=self.heads,
|
451 |
-
gradient_checkpointing=False,
|
452 |
-
use_cache=True,
|
453 |
-
)
|
454 |
-
self.inference_model = GPT2InferenceModel(
|
455 |
-
gpt_config,
|
456 |
-
self.gpt,
|
457 |
-
self.mel_pos_embedding,
|
458 |
-
self.mel_embedding,
|
459 |
-
self.final_norm,
|
460 |
-
self.mel_head,
|
461 |
-
kv_cache=kv_cache,
|
462 |
-
)
|
463 |
-
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
464 |
-
self.gpt.wte = self.mel_embedding
|
465 |
-
|
466 |
-
if use_deepspeed:
|
467 |
-
# init deepspeed inference engine
|
468 |
-
if use_deepspeed_f16:
|
469 |
-
self.gpt.wte = self.mel_embedding.half()
|
470 |
-
self.gpt.wpe = self.mel_pos_embedding.half()
|
471 |
-
self.ds_engine = deepspeed.init_inference(
|
472 |
-
model=self.inference_model.half(), # Transformers models
|
473 |
-
mp_size=1, # Number of GPU
|
474 |
-
dtype=torch.float16 if use_deepspeed_f16 else torch.float32, # desired data type of output
|
475 |
-
replace_method="auto", # Lets DS autmatically identify the layer to replace
|
476 |
-
replace_with_kernel_inject=True, # replace the model with the kernel injector
|
477 |
-
)
|
478 |
-
self.inference_model = self.ds_engine.module.eval()
|
479 |
-
|
480 |
-
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
481 |
-
inp = F.pad(input, (1, 0), value=start_token)
|
482 |
-
tar = F.pad(input, (0, 1), value=stop_token)
|
483 |
-
return inp, tar
|
484 |
-
|
485 |
-
def set_mel_padding(self, mel_input_tokens, mel_lengths):
|
486 |
-
"""
|
487 |
-
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
488 |
-
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
489 |
-
preformatting to create a working TTS model.
|
490 |
-
"""
|
491 |
-
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
492 |
-
for b in range(len(mel_lengths)):
|
493 |
-
actual_end = mel_lengths[b]
|
494 |
-
if actual_end < mel_input_tokens.shape[-1]:
|
495 |
-
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
496 |
-
return mel_input_tokens
|
497 |
-
|
498 |
-
def get_logits(
|
499 |
-
self,
|
500 |
-
speech_conditioning_inputs,
|
501 |
-
first_inputs,
|
502 |
-
first_head,
|
503 |
-
second_inputs=None,
|
504 |
-
second_head=None,
|
505 |
-
prompt=None,
|
506 |
-
get_attns=False,
|
507 |
-
return_latent=False,
|
508 |
-
attn_mask_text=None,
|
509 |
-
attn_mask_mel=None,
|
510 |
-
):
|
511 |
-
if prompt is not None and speech_conditioning_inputs is not None:
|
512 |
-
offset = speech_conditioning_inputs.shape[1] + prompt.shape[1]
|
513 |
-
if second_inputs is not None:
|
514 |
-
emb = torch.cat(
|
515 |
-
[speech_conditioning_inputs, prompt, first_inputs, second_inputs],
|
516 |
-
dim=1,
|
517 |
-
)
|
518 |
-
else:
|
519 |
-
emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1)
|
520 |
-
elif speech_conditioning_inputs is not None:
|
521 |
-
offset = speech_conditioning_inputs.shape[1]
|
522 |
-
if second_inputs is not None:
|
523 |
-
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
524 |
-
else:
|
525 |
-
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
526 |
-
elif prompt is not None:
|
527 |
-
offset = prompt.shape[1]
|
528 |
-
if second_inputs is not None:
|
529 |
-
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1)
|
530 |
-
else:
|
531 |
-
emb = torch.cat([prompt, first_inputs], dim=1)
|
532 |
-
|
533 |
-
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
534 |
-
attn_mask = None
|
535 |
-
if attn_mask_text is not None:
|
536 |
-
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1)
|
537 |
-
if prompt is not None:
|
538 |
-
attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device)
|
539 |
-
attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1)
|
540 |
-
|
541 |
-
gpt_out = self.gpt(
|
542 |
-
inputs_embeds=emb,
|
543 |
-
return_dict=True,
|
544 |
-
output_attentions=get_attns,
|
545 |
-
attention_mask=attn_mask,
|
546 |
-
)
|
547 |
-
|
548 |
-
if get_attns:
|
549 |
-
return gpt_out.attentions
|
550 |
-
|
551 |
-
enc = gpt_out.last_hidden_state[:, offset:]
|
552 |
-
enc = self.final_norm(enc)
|
553 |
-
|
554 |
-
if return_latent:
|
555 |
-
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :]
|
556 |
-
|
557 |
-
first_logits = enc[:, : first_inputs.shape[1]]
|
558 |
-
first_logits = first_head(first_logits)
|
559 |
-
first_logits = first_logits.permute(0, 2, 1)
|
560 |
-
if second_inputs is not None:
|
561 |
-
second_logits = enc[:, -second_inputs.shape[1] :]
|
562 |
-
second_logits = second_head(second_logits)
|
563 |
-
second_logits = second_logits.permute(0, 2, 1)
|
564 |
-
return first_logits, second_logits
|
565 |
-
else:
|
566 |
-
return first_logits
|
567 |
-
|
568 |
-
def get_conditioning(self, speech_conditioning_input):
|
569 |
-
speech_conditioning_input = (
|
570 |
-
speech_conditioning_input.unsqueeze(1)
|
571 |
-
if len(speech_conditioning_input.shape) == 3
|
572 |
-
else speech_conditioning_input
|
573 |
-
)
|
574 |
-
conds = []
|
575 |
-
for j in range(speech_conditioning_input.shape[1]):
|
576 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
577 |
-
conds = torch.stack(conds, dim=1)
|
578 |
-
conds = conds.mean(dim=1)
|
579 |
-
return conds
|
580 |
-
|
581 |
-
def get_prompts(self, prompt_codes):
|
582 |
-
"""
|
583 |
-
Create a prompt from the mel codes. This is used to condition the model on the mel codes.
|
584 |
-
Pad the prompt with start and stop mel tokens.
|
585 |
-
"""
|
586 |
-
prompt = prompt_codes
|
587 |
-
if self.training:
|
588 |
-
prompt_len = random.randint(1, 9) # in secs
|
589 |
-
prompt_len = prompt_len * 24 # in frames
|
590 |
-
|
591 |
-
if prompt_codes.shape[1] < prompt_len:
|
592 |
-
prompt_len = prompt_codes.shape[-1]
|
593 |
-
start = 0
|
594 |
-
else:
|
595 |
-
start = random.randint(0, prompt_codes.shape[-1] - prompt_len)
|
596 |
-
|
597 |
-
prompt = prompt_codes[:, start : start + prompt_len]
|
598 |
-
|
599 |
-
# add start and stop tokens
|
600 |
-
prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token)
|
601 |
-
prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token)
|
602 |
-
return prompt
|
603 |
-
|
604 |
-
# def get_prompts(self, prompt_codes):
|
605 |
-
# """
|
606 |
-
# Create a prompt from the mel codes. This is used to condition the model on the mel codes.
|
607 |
-
# Pad the prompt with start and stop mel tokens.
|
608 |
-
# """
|
609 |
-
# prompt = prompt_codes
|
610 |
-
# if self.training:
|
611 |
-
# max_prompt_len = 9 * 24
|
612 |
-
# if prompt_codes.shape[1] < max_prompt_len:
|
613 |
-
# prompt = prompt_codes
|
614 |
-
# else:
|
615 |
-
# start = random.randint(0, prompt_codes.shape[1] - max_prompt_len)
|
616 |
-
# prompt = prompt_codes[:, start : start + max_prompt_len]
|
617 |
-
|
618 |
-
# # add start and stop tokens
|
619 |
-
# prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token)
|
620 |
-
# prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token)
|
621 |
-
# return prompt
|
622 |
-
|
623 |
-
def forward(
|
624 |
-
self,
|
625 |
-
speech_conditioning_input,
|
626 |
-
text_inputs,
|
627 |
-
text_lengths,
|
628 |
-
mel_codes,
|
629 |
-
wav_lengths,
|
630 |
-
prompt_codes,
|
631 |
-
loss_weights=None,
|
632 |
-
text_first=True,
|
633 |
-
return_attentions=False,
|
634 |
-
return_latent=False,
|
635 |
-
):
|
636 |
-
"""
|
637 |
-
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
638 |
-
(actuated by `text_first`).
|
639 |
-
|
640 |
-
speech_conditioning_input: MEL float tensor, (b,80,s)
|
641 |
-
text_inputs: long tensor, (b,t)
|
642 |
-
text_lengths: long tensor, (b,)
|
643 |
-
mel_inputs: long tensor, (b,m)
|
644 |
-
wav_lengths: long tensor, (b,)
|
645 |
-
|
646 |
-
If return_attentions is specified, only logits are returned.
|
647 |
-
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
648 |
-
"""
|
649 |
-
|
650 |
-
# ❗ FIXIT
|
651 |
-
speech_conditioning_input = None
|
652 |
-
if self.max_conditioning_inputs == 0:
|
653 |
-
assert (
|
654 |
-
speech_conditioning_input is None
|
655 |
-
), " ❗ speech_conditioning_input is not None, but max_conditioning_inputs == 0"
|
656 |
-
|
657 |
-
max_text_len = text_lengths.max()
|
658 |
-
# Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values
|
659 |
-
# Like [..., 186, 45, 45, 83] where actually it should end with 186.
|
660 |
-
# We take last 3 codes to prevent abrupt ending of the audio.
|
661 |
-
# TODO: This is might need some testing.
|
662 |
-
mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3
|
663 |
-
|
664 |
-
# If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes.
|
665 |
-
max_mel_len = mel_lengths.max()
|
666 |
-
|
667 |
-
if max_mel_len > mel_codes.shape[-1]:
|
668 |
-
mel_codes = F.pad(mel_codes, (0, max_mel_len - mel_codes.shape[-1]))
|
669 |
-
|
670 |
-
# mel_lengths[mel_lengths >= max_mel_len] = max_mel_len
|
671 |
-
|
672 |
-
# silence aware lengths, skip the silence tokens at the end of the mel codes.
|
673 |
-
silence = True
|
674 |
-
for idx, l in enumerate(mel_lengths):
|
675 |
-
length = l.item()
|
676 |
-
while silence:
|
677 |
-
if mel_codes[idx, length - 1] != 83:
|
678 |
-
break
|
679 |
-
length -= 1
|
680 |
-
mel_lengths[idx] = length
|
681 |
-
|
682 |
-
# Lovely assertions
|
683 |
-
assert (
|
684 |
-
max_mel_len <= mel_codes.shape[-1]
|
685 |
-
), f" ❗ max_mel_len ({max_mel_len}) > mel_codes.shape[-1] ({mel_codes.shape[-1]})"
|
686 |
-
assert (
|
687 |
-
max_text_len <= text_inputs.shape[-1]
|
688 |
-
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})"
|
689 |
-
|
690 |
-
# Append stop token to text inputs
|
691 |
-
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)
|
692 |
-
|
693 |
-
# Append silence token to mel codes
|
694 |
-
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token)
|
695 |
-
|
696 |
-
# Pad mel codes with STOP_MEL_TOKEN
|
697 |
-
mel_codes = self.set_mel_padding(mel_codes, mel_lengths)
|
698 |
-
|
699 |
-
# Compute speech conditioning input
|
700 |
-
conds = None
|
701 |
-
if speech_conditioning_input is not None:
|
702 |
-
if not return_latent:
|
703 |
-
# Compute speech conditioning input
|
704 |
-
speech_conditioning_input = (
|
705 |
-
speech_conditioning_input.unsqueeze(1)
|
706 |
-
if len(speech_conditioning_input.shape) == 3
|
707 |
-
else speech_conditioning_input
|
708 |
-
)
|
709 |
-
|
710 |
-
conds = []
|
711 |
-
for j in range(speech_conditioning_input.shape[1]):
|
712 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
713 |
-
conds = torch.stack(conds, dim=1)
|
714 |
-
if self.average_conditioning_embeddings:
|
715 |
-
conds = conds.mean(dim=1).unsqueeze(1)
|
716 |
-
else:
|
717 |
-
# already computed
|
718 |
-
conds = speech_conditioning_input.unsqueeze(1)
|
719 |
-
|
720 |
-
# Build input and target tensors
|
721 |
-
# Prepend start token to inputs and append stop token to targets
|
722 |
-
text_inputs, text_targets = self.build_aligned_inputs_and_targets(
|
723 |
-
text_inputs, self.start_text_token, self.stop_text_token
|
724 |
-
)
|
725 |
-
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(
|
726 |
-
mel_codes, self.start_mel_token, self.stop_mel_token
|
727 |
-
)
|
728 |
-
|
729 |
-
# Set attn_mask
|
730 |
-
attn_mask_text = None
|
731 |
-
attn_mask_mel = None
|
732 |
-
if not return_latent:
|
733 |
-
attn_mask_text = torch.ones(
|
734 |
-
text_inputs.shape[0],
|
735 |
-
text_inputs.shape[1],
|
736 |
-
dtype=torch.bool,
|
737 |
-
device=text_inputs.device,
|
738 |
-
)
|
739 |
-
attn_mask_mel = torch.ones(
|
740 |
-
mel_codes.shape[0],
|
741 |
-
mel_codes.shape[1],
|
742 |
-
dtype=torch.bool,
|
743 |
-
device=mel_codes.device,
|
744 |
-
)
|
745 |
-
|
746 |
-
for idx, l in enumerate(text_lengths):
|
747 |
-
attn_mask_text[idx, l + 1 :] = 0.0
|
748 |
-
|
749 |
-
for idx, l in enumerate(mel_lengths):
|
750 |
-
attn_mask_mel[idx, l + 1 :] = 0.0
|
751 |
-
|
752 |
-
# Compute text embeddings + positional embeddings
|
753 |
-
# print(" > text input latent:", text_inputs)
|
754 |
-
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
755 |
-
|
756 |
-
# Compute mel embeddings + positional embeddings
|
757 |
-
mel_emb = self.mel_embedding(mel_codes) + self.mel_pos_embedding(mel_codes)
|
758 |
-
|
759 |
-
# Compute prompt embeddings + positional embeddings
|
760 |
-
prompt = self.get_prompts(prompt_codes)
|
761 |
-
|
762 |
-
prompt_emb = self.mel_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach()
|
763 |
-
|
764 |
-
# Get logits
|
765 |
-
sub = -4 # don't ask me why 😄
|
766 |
-
if self.training:
|
767 |
-
sub = -1
|
768 |
-
text_logits, mel_logits = self.get_logits(
|
769 |
-
conds,
|
770 |
-
text_emb,
|
771 |
-
self.text_head,
|
772 |
-
mel_emb,
|
773 |
-
self.mel_head,
|
774 |
-
prompt=prompt_emb,
|
775 |
-
get_attns=return_attentions,
|
776 |
-
return_latent=return_latent,
|
777 |
-
attn_mask_text=attn_mask_text,
|
778 |
-
attn_mask_mel=attn_mask_mel,
|
779 |
-
)
|
780 |
-
if return_latent:
|
781 |
-
return mel_logits[:, :sub] # sub to prevent bla.
|
782 |
-
|
783 |
-
if return_attentions:
|
784 |
-
return mel_logits
|
785 |
-
|
786 |
-
# Set paddings to -1 to ignore them in loss
|
787 |
-
for idx, l in enumerate(text_lengths):
|
788 |
-
text_targets[idx, l + 1 :] = -1
|
789 |
-
|
790 |
-
for idx, l in enumerate(mel_lengths):
|
791 |
-
mel_targets[idx, l + 1 :] = -1
|
792 |
-
|
793 |
-
# check if stoptoken is in every row of mel_targets
|
794 |
-
assert (mel_targets == self.stop_mel_token).sum() >= mel_targets.shape[
|
795 |
-
0
|
796 |
-
], f" ❗ mel_targets does not contain stop token ({self.stop_mel_token}) in every row."
|
797 |
-
|
798 |
-
# Compute losses
|
799 |
-
loss_text = F.cross_entropy(
|
800 |
-
text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
|
801 |
-
)
|
802 |
-
loss_mel = F.cross_entropy(
|
803 |
-
mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
|
804 |
-
)
|
805 |
-
|
806 |
-
# if loss_weights is not None:
|
807 |
-
# loss_text = loss_text * loss_weights[:, None]
|
808 |
-
# loss_mel = loss_mel * loss_weights[:, None]
|
809 |
-
return loss_text.mean(), loss_mel.mean(), mel_logits
|
810 |
-
|
811 |
-
def text_forward(self, speech_conditioning_input, text_inputs, text_lengths):
|
812 |
-
"""
|
813 |
-
Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
|
814 |
-
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
|
815 |
-
"""
|
816 |
-
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
817 |
-
# chopping the inputs by the maximum actual length.
|
818 |
-
max_text_len = text_lengths.max()
|
819 |
-
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)
|
820 |
-
|
821 |
-
speech_conditioning_input = (
|
822 |
-
speech_conditioning_input.unsqueeze(1)
|
823 |
-
if len(speech_conditioning_input.shape) == 3
|
824 |
-
else speech_conditioning_input
|
825 |
-
)
|
826 |
-
conds = []
|
827 |
-
for j in range(speech_conditioning_input.shape[1]):
|
828 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
829 |
-
conds = torch.stack(conds, dim=1)
|
830 |
-
if self.average_conditioning_embeddings:
|
831 |
-
conds = conds.mean(dim=1).unsqueeze(1)
|
832 |
-
|
833 |
-
text_inputs, text_targets = self.build_aligned_inputs_and_targets(
|
834 |
-
text_inputs, self.start_text_token, self.stop_text_token
|
835 |
-
)
|
836 |
-
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding
|
837 |
-
text_logits = self.get_logits(conds, text_emb, self.text_head)
|
838 |
-
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
839 |
-
return loss_text.mean()
|
840 |
-
|
841 |
-
def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None):
|
842 |
-
"""
|
843 |
-
Performs autoregressive modeling on only speech data.
|
844 |
-
"""
|
845 |
-
assert self.max_mel_tokens >= mel_codes.shape[1], f"{mel_codes.shape[1]}"
|
846 |
-
|
847 |
-
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
848 |
-
# chopping the inputs by the maximum actual length.
|
849 |
-
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
850 |
-
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token)
|
851 |
-
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
852 |
-
if raw_mels is not None:
|
853 |
-
raw_mels = raw_mels[:, :, : max_mel_len * 4]
|
854 |
-
|
855 |
-
speech_conditioning_input = (
|
856 |
-
speech_conditioning_input.unsqueeze(1)
|
857 |
-
if len(speech_conditioning_input.shape) == 3
|
858 |
-
else speech_conditioning_input
|
859 |
-
)
|
860 |
-
conds = []
|
861 |
-
for j in range(speech_conditioning_input.shape[1]):
|
862 |
-
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
863 |
-
conds = torch.stack(conds, dim=1)
|
864 |
-
if self.average_conditioning_embeddings:
|
865 |
-
conds = conds.mean(dim=1).unsqueeze(1)
|
866 |
-
|
867 |
-
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(
|
868 |
-
mel_codes, self.start_mel_token, self.stop_mel_token
|
869 |
-
)
|
870 |
-
if raw_mels is not None:
|
871 |
-
mel_inp = F.pad(raw_mels, (0, 4))
|
872 |
-
else:
|
873 |
-
mel_inp = mel_codes
|
874 |
-
mel_emb = self.mel_embedding(mel_inp)
|
875 |
-
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding
|
876 |
-
mel_logits = self.get_logits(conds, mel_emb, self.mel_head)
|
877 |
-
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
878 |
-
return loss_mel.mean()
|
879 |
-
|
880 |
-
def get_generator(self, fake_inputs, **hf_generate_kwargs):
|
881 |
-
return self.inference_model.generate_stream(
|
882 |
-
fake_inputs,
|
883 |
-
bos_token_id=self.start_mel_token,
|
884 |
-
pad_token_id=self.stop_mel_token,
|
885 |
-
eos_token_id=self.stop_mel_token,
|
886 |
-
max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens,
|
887 |
-
do_stream=True,
|
888 |
-
**hf_generate_kwargs,
|
889 |
-
)
|
890 |
-
|
891 |
-
def compute_embeddings(
|
892 |
-
self,
|
893 |
-
speech_conditioning_latent,
|
894 |
-
text_inputs,
|
895 |
-
input_tokens=None,
|
896 |
-
prompt_codes=None,
|
897 |
-
pad_input_text=False,
|
898 |
-
):
|
899 |
-
if pad_input_text and text_inputs.shape[1] < 250:
|
900 |
-
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
901 |
-
else:
|
902 |
-
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
903 |
-
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
904 |
-
|
905 |
-
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
906 |
-
|
907 |
-
print(" > Text inputs:", text_inputs)
|
908 |
-
if prompt_codes is not None:
|
909 |
-
prompt_codes = self.get_prompts(prompt_codes)
|
910 |
-
prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes)
|
911 |
-
print(" > Prompt inputs:", prompt_codes)
|
912 |
-
print(" > Prompt inputs shape:", prompt_codes.shape)
|
913 |
-
emb = torch.cat([prompt_emb, emb], dim=1)
|
914 |
-
|
915 |
-
if speech_conditioning_latent is not None:
|
916 |
-
conds = speech_conditioning_latent.unsqueeze(1)
|
917 |
-
emb = torch.cat([conds, emb], dim=1)
|
918 |
-
|
919 |
-
self.inference_model.store_prefix_emb(emb)
|
920 |
-
|
921 |
-
fake_inputs = torch.full(
|
922 |
-
(
|
923 |
-
emb.shape[0],
|
924 |
-
emb.shape[1] + 1, # +1 for the start_mel_token
|
925 |
-
),
|
926 |
-
fill_value=1,
|
927 |
-
dtype=torch.long,
|
928 |
-
device=text_inputs.device,
|
929 |
-
)
|
930 |
-
fake_inputs[:, -1] = self.start_mel_token
|
931 |
-
|
932 |
-
if input_tokens is not None:
|
933 |
-
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
934 |
-
return fake_inputs
|
935 |
-
|
936 |
-
def inference_speech(
|
937 |
-
self,
|
938 |
-
speech_conditioning_latent,
|
939 |
-
text_inputs,
|
940 |
-
input_tokens=None,
|
941 |
-
prompt_codes=None,
|
942 |
-
pad_input_text=False,
|
943 |
-
**hf_generate_kwargs,
|
944 |
-
):
|
945 |
-
if pad_input_text and text_inputs.shape[1] < 250:
|
946 |
-
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
947 |
-
else:
|
948 |
-
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
949 |
-
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
950 |
-
|
951 |
-
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
952 |
-
|
953 |
-
print(" > Text inputs:", text_inputs)
|
954 |
-
if prompt_codes is not None:
|
955 |
-
prompt_codes = self.get_prompts(prompt_codes)
|
956 |
-
prompt_emb = self.mel_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes)
|
957 |
-
print(" > Prompt inputs:", prompt_codes)
|
958 |
-
print(" > Prompt inputs shape:", prompt_codes.shape)
|
959 |
-
emb = torch.cat([prompt_emb, emb], dim=1)
|
960 |
-
|
961 |
-
if speech_conditioning_latent is not None:
|
962 |
-
conds = speech_conditioning_latent.unsqueeze(1)
|
963 |
-
emb = torch.cat([conds, emb], dim=1)
|
964 |
-
|
965 |
-
self.inference_model.store_prefix_emb(emb)
|
966 |
-
|
967 |
-
fake_inputs = torch.full(
|
968 |
-
(
|
969 |
-
emb.shape[0],
|
970 |
-
emb.shape[1] + 1, # +1 for the start_mel_token
|
971 |
-
),
|
972 |
-
fill_value=1,
|
973 |
-
dtype=torch.long,
|
974 |
-
device=text_inputs.device,
|
975 |
-
)
|
976 |
-
fake_inputs[:, -1] = self.start_mel_token
|
977 |
-
|
978 |
-
if input_tokens is not None:
|
979 |
-
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
980 |
-
|
981 |
-
gen = self.inference_model.generate(
|
982 |
-
fake_inputs,
|
983 |
-
bos_token_id=self.start_mel_token,
|
984 |
-
pad_token_id=self.stop_mel_token,
|
985 |
-
eos_token_id=self.stop_mel_token,
|
986 |
-
max_length=self.max_mel_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens,
|
987 |
-
**hf_generate_kwargs,
|
988 |
-
)
|
989 |
-
if "return_dict_in_generate" in hf_generate_kwargs:
|
990 |
-
return gen.sequences[:, fake_inputs.shape[1] :], gen
|
991 |
-
return gen[:, fake_inputs.shape[1] :]
|
992 |
-
|
993 |
-
# Turns the (utterly insane) output of HF.generate() into a far more sane output:
|
994 |
-
# [tensors(B,H,S,S)]. Outer=layers, B=batch,H=head,S=sequence
|
995 |
-
def make_hf_generate_attentions_sane(self, attentions):
|
996 |
-
layers = [[] for _ in range(len(attentions[0]))]
|
997 |
-
full_attention_size = attentions[-1][0].shape[-1]
|
998 |
-
for i, gen in enumerate(attentions):
|
999 |
-
for j, lyr in enumerate(gen):
|
1000 |
-
layers[j].append(F.pad(lyr, (0, full_attention_size - lyr.shape[-1])))
|
1001 |
-
catted = []
|
1002 |
-
for lyr in layers:
|
1003 |
-
catted.append(torch.cat(lyr, dim=2))
|
1004 |
-
return catted
|
1005 |
-
|
1006 |
-
def convert_attentions_to_aligned_codes(self, text, attentions, codes, num_conds):
|
1007 |
-
"""
|
1008 |
-
This was an attempt to make some sense out of the attention matrix retrieved from the unified_voice model. Unfortunately, I can't use it for aligning text & voice.
|
1009 |
-
"""
|
1010 |
-
text_padding = num_conds + 2
|
1011 |
-
num_text = text.shape[-1]
|
1012 |
-
num_context = num_text + text_padding
|
1013 |
-
assert num_context + 1 == attentions[0][0].shape[-1]
|
1014 |
-
attentions = self.make_hf_generate_attentions_sane(attentions)
|
1015 |
-
results = [torch.empty_like(codes) for _ in range(len(attentions))]
|
1016 |
-
for l, layer in enumerate(attentions):
|
1017 |
-
dec_context = layer[:, :, num_context:, :]
|
1018 |
-
# Mask out everything that isn't text (including the start token, which gets a LOT of attention)
|
1019 |
-
dec_context[:, :, :, : text_padding + 1] = 0
|
1020 |
-
dec_context[:, :, :, num_context:] = 0
|
1021 |
-
for h in range(dec_context.shape[1]):
|
1022 |
-
dec_context_indices = torch.argmax(dec_context[0, h], dim=-1)
|
1023 |
-
print(f"layer_{l};head_{h}: " + str(dec_context_indices))
|
1024 |
-
for t, att_tok in enumerate(attentions):
|
1025 |
-
combined_attention_weights = torch.zeros((codes.shape[0], num_text), device=codes.device)
|
1026 |
-
for lyr in att_tok:
|
1027 |
-
token_to_text_attentions = lyr[:, :, -1, text_padding : (text_padding + num_text)].sum(dim=1)
|
1028 |
-
combined_attention_weights = combined_attention_weights + token_to_text_attentions
|
1029 |
-
break
|
1030 |
-
most_attended_text_token = combined_attention_weights.argmax(dim=-1)
|
1031 |
-
results[:, t] = most_attended_text_token
|
1032 |
-
eos_token_mask = codes != self.stop_mel_token
|
1033 |
-
return results * eos_token_mask
|
1034 |
-
|
1035 |
-
|
1036 |
-
@register_model
|
1037 |
-
def register_unified_voice_prompt(opt_net, opt):
|
1038 |
-
return UnifiedVoice(**opt_get(opt_net, ["kwargs"], {}))
|
1039 |
-
|
1040 |
-
|
1041 |
-
if __name__ == "__main__":
|
1042 |
-
gpt = UnifiedVoice(
|
1043 |
-
model_dim=256,
|
1044 |
-
heads=4,
|
1045 |
-
train_solo_embeddings=True,
|
1046 |
-
use_mel_codes_as_input=True,
|
1047 |
-
max_conditioning_inputs=4,
|
1048 |
-
freeze_everything_but_position_embeddings=True,
|
1049 |
-
)
|
1050 |
-
l = gpt(
|
1051 |
-
torch.randn(2, 3, 80, 800),
|
1052 |
-
torch.randint(high=256, size=(2, 120)),
|
1053 |
-
torch.tensor([32, 120]),
|
1054 |
-
torch.randint(high=8192, size=(2, 250)),
|
1055 |
-
torch.tensor([250 * 256, 195 * 256]),
|
1056 |
-
)
|
1057 |
-
# gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TTS/TTS/tts/layers/xtts/hifigan_decoder.py
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
6 |
+
import torchaudio
|
7 |
+
|
8 |
+
from TTS.utils.io import load_fsspec
|
9 |
+
|
10 |
+
|
11 |
+
LRELU_SLOPE = 0.1
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(k, d):
|
15 |
+
return int((k * d - d) / 2)
|
16 |
+
|
17 |
+
|
18 |
+
class ResBlock1(torch.nn.Module):
|
19 |
+
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block.
|
20 |
+
|
21 |
+
Network::
|
22 |
+
|
23 |
+
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
|
24 |
+
|--------------------------------------------------------------------------------------------------|
|
25 |
+
|
26 |
+
|
27 |
+
Args:
|
28 |
+
channels (int): number of hidden channels for the convolutional layers.
|
29 |
+
kernel_size (int): size of the convolution filter in each layer.
|
30 |
+
dilations (list): list of dilation value for each conv layer in a block.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
34 |
+
super().__init__()
|
35 |
+
self.convs1 = nn.ModuleList(
|
36 |
+
[
|
37 |
+
weight_norm(
|
38 |
+
Conv1d(
|
39 |
+
channels,
|
40 |
+
channels,
|
41 |
+
kernel_size,
|
42 |
+
1,
|
43 |
+
dilation=dilation[0],
|
44 |
+
padding=get_padding(kernel_size, dilation[0]),
|
45 |
+
)
|
46 |
+
),
|
47 |
+
weight_norm(
|
48 |
+
Conv1d(
|
49 |
+
channels,
|
50 |
+
channels,
|
51 |
+
kernel_size,
|
52 |
+
1,
|
53 |
+
dilation=dilation[1],
|
54 |
+
padding=get_padding(kernel_size, dilation[1]),
|
55 |
+
)
|
56 |
+
),
|
57 |
+
weight_norm(
|
58 |
+
Conv1d(
|
59 |
+
channels,
|
60 |
+
channels,
|
61 |
+
kernel_size,
|
62 |
+
1,
|
63 |
+
dilation=dilation[2],
|
64 |
+
padding=get_padding(kernel_size, dilation[2]),
|
65 |
+
)
|
66 |
+
),
|
67 |
+
]
|
68 |
+
)
|
69 |
+
|
70 |
+
self.convs2 = nn.ModuleList(
|
71 |
+
[
|
72 |
+
weight_norm(
|
73 |
+
Conv1d(
|
74 |
+
channels,
|
75 |
+
channels,
|
76 |
+
kernel_size,
|
77 |
+
1,
|
78 |
+
dilation=1,
|
79 |
+
padding=get_padding(kernel_size, 1),
|
80 |
+
)
|
81 |
+
),
|
82 |
+
weight_norm(
|
83 |
+
Conv1d(
|
84 |
+
channels,
|
85 |
+
channels,
|
86 |
+
kernel_size,
|
87 |
+
1,
|
88 |
+
dilation=1,
|
89 |
+
padding=get_padding(kernel_size, 1),
|
90 |
+
)
|
91 |
+
),
|
92 |
+
weight_norm(
|
93 |
+
Conv1d(
|
94 |
+
channels,
|
95 |
+
channels,
|
96 |
+
kernel_size,
|
97 |
+
1,
|
98 |
+
dilation=1,
|
99 |
+
padding=get_padding(kernel_size, 1),
|
100 |
+
)
|
101 |
+
),
|
102 |
+
]
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
"""
|
107 |
+
Args:
|
108 |
+
x (Tensor): input tensor.
|
109 |
+
Returns:
|
110 |
+
Tensor: output tensor.
|
111 |
+
Shapes:
|
112 |
+
x: [B, C, T]
|
113 |
+
"""
|
114 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
115 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
116 |
+
xt = c1(xt)
|
117 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
118 |
+
xt = c2(xt)
|
119 |
+
x = xt + x
|
120 |
+
return x
|
121 |
+
|
122 |
+
def remove_weight_norm(self):
|
123 |
+
for l in self.convs1:
|
124 |
+
remove_weight_norm(l)
|
125 |
+
for l in self.convs2:
|
126 |
+
remove_weight_norm(l)
|
127 |
+
|
128 |
+
|
129 |
+
class ResBlock2(torch.nn.Module):
|
130 |
+
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block.
|
131 |
+
|
132 |
+
Network::
|
133 |
+
|
134 |
+
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
|
135 |
+
|---------------------------------------------------|
|
136 |
+
|
137 |
+
|
138 |
+
Args:
|
139 |
+
channels (int): number of hidden channels for the convolutional layers.
|
140 |
+
kernel_size (int): size of the convolution filter in each layer.
|
141 |
+
dilations (list): list of dilation value for each conv layer in a block.
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
145 |
+
super().__init__()
|
146 |
+
self.convs = nn.ModuleList(
|
147 |
+
[
|
148 |
+
weight_norm(
|
149 |
+
Conv1d(
|
150 |
+
channels,
|
151 |
+
channels,
|
152 |
+
kernel_size,
|
153 |
+
1,
|
154 |
+
dilation=dilation[0],
|
155 |
+
padding=get_padding(kernel_size, dilation[0]),
|
156 |
+
)
|
157 |
+
),
|
158 |
+
weight_norm(
|
159 |
+
Conv1d(
|
160 |
+
channels,
|
161 |
+
channels,
|
162 |
+
kernel_size,
|
163 |
+
1,
|
164 |
+
dilation=dilation[1],
|
165 |
+
padding=get_padding(kernel_size, dilation[1]),
|
166 |
+
)
|
167 |
+
),
|
168 |
+
]
|
169 |
+
)
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
for c in self.convs:
|
173 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
174 |
+
xt = c(xt)
|
175 |
+
x = xt + x
|
176 |
+
return x
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
for l in self.convs:
|
180 |
+
remove_weight_norm(l)
|
181 |
+
|
182 |
+
|
183 |
+
class HifiganGenerator(torch.nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
in_channels,
|
187 |
+
out_channels,
|
188 |
+
resblock_type,
|
189 |
+
resblock_dilation_sizes,
|
190 |
+
resblock_kernel_sizes,
|
191 |
+
upsample_kernel_sizes,
|
192 |
+
upsample_initial_channel,
|
193 |
+
upsample_factors,
|
194 |
+
inference_padding=5,
|
195 |
+
cond_channels=0,
|
196 |
+
conv_pre_weight_norm=True,
|
197 |
+
conv_post_weight_norm=True,
|
198 |
+
conv_post_bias=True,
|
199 |
+
cond_in_each_up_layer=False,
|
200 |
+
):
|
201 |
+
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
202 |
+
|
203 |
+
Network:
|
204 |
+
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
|
205 |
+
.. -> zI ---|
|
206 |
+
resblockN_kNx1 -> zN ---'
|
207 |
+
|
208 |
+
Args:
|
209 |
+
in_channels (int): number of input tensor channels.
|
210 |
+
out_channels (int): number of output tensor channels.
|
211 |
+
resblock_type (str): type of the `ResBlock`. '1' or '2'.
|
212 |
+
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
|
213 |
+
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
|
214 |
+
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
|
215 |
+
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
|
216 |
+
for each consecutive upsampling layer.
|
217 |
+
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
|
218 |
+
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
|
219 |
+
"""
|
220 |
+
super().__init__()
|
221 |
+
self.inference_padding = inference_padding
|
222 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
223 |
+
self.num_upsamples = len(upsample_factors)
|
224 |
+
self.cond_in_each_up_layer = cond_in_each_up_layer
|
225 |
+
|
226 |
+
# initial upsampling layers
|
227 |
+
self.conv_pre = weight_norm(
|
228 |
+
Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)
|
229 |
+
)
|
230 |
+
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
231 |
+
# upsampling layers
|
232 |
+
self.ups = nn.ModuleList()
|
233 |
+
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
|
234 |
+
self.ups.append(
|
235 |
+
weight_norm(
|
236 |
+
ConvTranspose1d(
|
237 |
+
upsample_initial_channel // (2**i),
|
238 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
239 |
+
k,
|
240 |
+
u,
|
241 |
+
padding=(k - u) // 2,
|
242 |
+
)
|
243 |
+
)
|
244 |
+
)
|
245 |
+
# MRF blocks
|
246 |
+
self.resblocks = nn.ModuleList()
|
247 |
+
for i in range(len(self.ups)):
|
248 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
249 |
+
for _, (k, d) in enumerate(
|
250 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
251 |
+
):
|
252 |
+
self.resblocks.append(resblock(ch, k, d))
|
253 |
+
# post convolution layer
|
254 |
+
self.conv_post = weight_norm(
|
255 |
+
Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)
|
256 |
+
)
|
257 |
+
if cond_channels > 0:
|
258 |
+
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)
|
259 |
+
|
260 |
+
if not conv_pre_weight_norm:
|
261 |
+
remove_weight_norm(self.conv_pre)
|
262 |
+
|
263 |
+
if not conv_post_weight_norm:
|
264 |
+
remove_weight_norm(self.conv_post)
|
265 |
+
|
266 |
+
if self.cond_in_each_up_layer:
|
267 |
+
self.conds = nn.ModuleList()
|
268 |
+
for i in range(len(self.ups)):
|
269 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
270 |
+
self.conds.append(nn.Conv1d(cond_channels, ch, 1))
|
271 |
+
|
272 |
+
def forward(self, x, g=None):
|
273 |
+
"""
|
274 |
+
Args:
|
275 |
+
x (Tensor): feature input tensor.
|
276 |
+
g (Tensor): global conditioning input tensor.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
Tensor: output waveform.
|
280 |
+
|
281 |
+
Shapes:
|
282 |
+
x: [B, C, T]
|
283 |
+
Tensor: [B, 1, T]
|
284 |
+
"""
|
285 |
+
o = self.conv_pre(x)
|
286 |
+
if hasattr(self, "cond_layer"):
|
287 |
+
o = o + self.cond_layer(g)
|
288 |
+
for i in range(self.num_upsamples):
|
289 |
+
o = F.leaky_relu(o, LRELU_SLOPE)
|
290 |
+
o = self.ups[i](o)
|
291 |
+
|
292 |
+
if self.cond_in_each_up_layer:
|
293 |
+
o = o + self.conds[i](g)
|
294 |
+
|
295 |
+
z_sum = None
|
296 |
+
for j in range(self.num_kernels):
|
297 |
+
if z_sum is None:
|
298 |
+
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
299 |
+
else:
|
300 |
+
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
301 |
+
o = z_sum / self.num_kernels
|
302 |
+
o = F.leaky_relu(o)
|
303 |
+
o = self.conv_post(o)
|
304 |
+
o = torch.tanh(o)
|
305 |
+
return o
|
306 |
+
|
307 |
+
@torch.no_grad()
|
308 |
+
def inference(self, c):
|
309 |
+
"""
|
310 |
+
Args:
|
311 |
+
x (Tensor): conditioning input tensor.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
Tensor: output waveform.
|
315 |
+
|
316 |
+
Shapes:
|
317 |
+
x: [B, C, T]
|
318 |
+
Tensor: [B, 1, T]
|
319 |
+
"""
|
320 |
+
c = c.to(self.conv_pre.weight.device)
|
321 |
+
c = torch.nn.functional.pad(
|
322 |
+
c, (self.inference_padding, self.inference_padding), "replicate"
|
323 |
+
)
|
324 |
+
return self.forward(c)
|
325 |
+
|
326 |
+
def remove_weight_norm(self):
|
327 |
+
print("Removing weight norm...")
|
328 |
+
for l in self.ups:
|
329 |
+
remove_weight_norm(l)
|
330 |
+
for l in self.resblocks:
|
331 |
+
l.remove_weight_norm()
|
332 |
+
remove_weight_norm(self.conv_pre)
|
333 |
+
remove_weight_norm(self.conv_post)
|
334 |
+
|
335 |
+
def load_checkpoint(
|
336 |
+
self, config, checkpoint_path, eval=False, cache=False
|
337 |
+
): # pylint: disable=unused-argument, redefined-builtin
|
338 |
+
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
339 |
+
self.load_state_dict(state["model"])
|
340 |
+
if eval:
|
341 |
+
self.eval()
|
342 |
+
assert not self.training
|
343 |
+
self.remove_weight_norm()
|
344 |
+
|
345 |
+
class SELayer(nn.Module):
|
346 |
+
def __init__(self, channel, reduction=8):
|
347 |
+
super(SELayer, self).__init__()
|
348 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
349 |
+
self.fc = nn.Sequential(
|
350 |
+
nn.Linear(channel, channel // reduction),
|
351 |
+
nn.ReLU(inplace=True),
|
352 |
+
nn.Linear(channel // reduction, channel),
|
353 |
+
nn.Sigmoid(),
|
354 |
+
)
|
355 |
+
|
356 |
+
def forward(self, x):
|
357 |
+
b, c, _, _ = x.size()
|
358 |
+
y = self.avg_pool(x).view(b, c)
|
359 |
+
y = self.fc(y).view(b, c, 1, 1)
|
360 |
+
return x * y
|
361 |
+
|
362 |
+
|
363 |
+
class SEBasicBlock(nn.Module):
|
364 |
+
expansion = 1
|
365 |
+
|
366 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
|
367 |
+
super(SEBasicBlock, self).__init__()
|
368 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
369 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
370 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
|
371 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
372 |
+
self.relu = nn.ReLU(inplace=True)
|
373 |
+
self.se = SELayer(planes, reduction)
|
374 |
+
self.downsample = downsample
|
375 |
+
self.stride = stride
|
376 |
+
|
377 |
+
def forward(self, x):
|
378 |
+
residual = x
|
379 |
+
|
380 |
+
out = self.conv1(x)
|
381 |
+
out = self.relu(out)
|
382 |
+
out = self.bn1(out)
|
383 |
+
|
384 |
+
out = self.conv2(out)
|
385 |
+
out = self.bn2(out)
|
386 |
+
out = self.se(out)
|
387 |
+
|
388 |
+
if self.downsample is not None:
|
389 |
+
residual = self.downsample(x)
|
390 |
+
|
391 |
+
out += residual
|
392 |
+
out = self.relu(out)
|
393 |
+
return out
|
394 |
+
|
395 |
+
|
396 |
+
def set_init_dict(model_dict, checkpoint_state, c):
|
397 |
+
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
|
398 |
+
for k, v in checkpoint_state.items():
|
399 |
+
if k not in model_dict:
|
400 |
+
print(" | > Layer missing in the model definition: {}".format(k))
|
401 |
+
# 1. filter out unnecessary keys
|
402 |
+
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
|
403 |
+
# 2. filter out different size layers
|
404 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
|
405 |
+
# 3. skip reinit layers
|
406 |
+
if c.has("reinit_layers") and c.reinit_layers is not None:
|
407 |
+
for reinit_layer_name in c.reinit_layers:
|
408 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
|
409 |
+
# 4. overwrite entries in the existing state dict
|
410 |
+
model_dict.update(pretrained_dict)
|
411 |
+
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
|
412 |
+
return model_dict
|
413 |
+
|
414 |
+
|
415 |
+
class PreEmphasis(nn.Module):
|
416 |
+
def __init__(self, coefficient=0.97):
|
417 |
+
super().__init__()
|
418 |
+
self.coefficient = coefficient
|
419 |
+
self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0))
|
420 |
+
|
421 |
+
def forward(self, x):
|
422 |
+
assert len(x.size()) == 2
|
423 |
+
|
424 |
+
x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect")
|
425 |
+
return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
|
426 |
+
|
427 |
+
|
428 |
+
|
429 |
+
class ResNetSpeakerEncoder(nn.Module):
|
430 |
+
"""This is copied from 🐸TTS to remove it from the dependencies.
|
431 |
+
"""
|
432 |
+
|
433 |
+
# pylint: disable=W0102
|
434 |
+
def __init__(
|
435 |
+
self,
|
436 |
+
input_dim=64,
|
437 |
+
proj_dim=512,
|
438 |
+
layers=[3, 4, 6, 3],
|
439 |
+
num_filters=[32, 64, 128, 256],
|
440 |
+
encoder_type="ASP",
|
441 |
+
log_input=False,
|
442 |
+
use_torch_spec=False,
|
443 |
+
audio_config=None,
|
444 |
+
):
|
445 |
+
super(ResNetSpeakerEncoder, self).__init__()
|
446 |
+
|
447 |
+
self.encoder_type = encoder_type
|
448 |
+
self.input_dim = input_dim
|
449 |
+
self.log_input = log_input
|
450 |
+
self.use_torch_spec = use_torch_spec
|
451 |
+
self.audio_config = audio_config
|
452 |
+
self.proj_dim = proj_dim
|
453 |
+
|
454 |
+
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
|
455 |
+
self.relu = nn.ReLU(inplace=True)
|
456 |
+
self.bn1 = nn.BatchNorm2d(num_filters[0])
|
457 |
+
|
458 |
+
self.inplanes = num_filters[0]
|
459 |
+
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
|
460 |
+
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
|
461 |
+
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
|
462 |
+
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))
|
463 |
+
|
464 |
+
self.instancenorm = nn.InstanceNorm1d(input_dim)
|
465 |
+
|
466 |
+
if self.use_torch_spec:
|
467 |
+
self.torch_spec = torch.nn.Sequential(
|
468 |
+
PreEmphasis(audio_config["preemphasis"]),
|
469 |
+
torchaudio.transforms.MelSpectrogram(
|
470 |
+
sample_rate=audio_config["sample_rate"],
|
471 |
+
n_fft=audio_config["fft_size"],
|
472 |
+
win_length=audio_config["win_length"],
|
473 |
+
hop_length=audio_config["hop_length"],
|
474 |
+
window_fn=torch.hamming_window,
|
475 |
+
n_mels=audio_config["num_mels"],
|
476 |
+
),
|
477 |
+
)
|
478 |
+
|
479 |
+
else:
|
480 |
+
self.torch_spec = None
|
481 |
+
|
482 |
+
outmap_size = int(self.input_dim / 8)
|
483 |
+
|
484 |
+
self.attention = nn.Sequential(
|
485 |
+
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
|
486 |
+
nn.ReLU(),
|
487 |
+
nn.BatchNorm1d(128),
|
488 |
+
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
|
489 |
+
nn.Softmax(dim=2),
|
490 |
+
)
|
491 |
+
|
492 |
+
if self.encoder_type == "SAP":
|
493 |
+
out_dim = num_filters[3] * outmap_size
|
494 |
+
elif self.encoder_type == "ASP":
|
495 |
+
out_dim = num_filters[3] * outmap_size * 2
|
496 |
+
else:
|
497 |
+
raise ValueError("Undefined encoder")
|
498 |
+
|
499 |
+
self.fc = nn.Linear(out_dim, proj_dim)
|
500 |
+
|
501 |
+
self._init_layers()
|
502 |
+
|
503 |
+
def _init_layers(self):
|
504 |
+
for m in self.modules():
|
505 |
+
if isinstance(m, nn.Conv2d):
|
506 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
507 |
+
elif isinstance(m, nn.BatchNorm2d):
|
508 |
+
nn.init.constant_(m.weight, 1)
|
509 |
+
nn.init.constant_(m.bias, 0)
|
510 |
+
|
511 |
+
def create_layer(self, block, planes, blocks, stride=1):
|
512 |
+
downsample = None
|
513 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
514 |
+
downsample = nn.Sequential(
|
515 |
+
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
516 |
+
nn.BatchNorm2d(planes * block.expansion),
|
517 |
+
)
|
518 |
+
|
519 |
+
layers = []
|
520 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
521 |
+
self.inplanes = planes * block.expansion
|
522 |
+
for _ in range(1, blocks):
|
523 |
+
layers.append(block(self.inplanes, planes))
|
524 |
+
|
525 |
+
return nn.Sequential(*layers)
|
526 |
+
|
527 |
+
# pylint: disable=R0201
|
528 |
+
def new_parameter(self, *size):
|
529 |
+
out = nn.Parameter(torch.FloatTensor(*size))
|
530 |
+
nn.init.xavier_normal_(out)
|
531 |
+
return out
|
532 |
+
|
533 |
+
def forward(self, x, l2_norm=False):
|
534 |
+
"""Forward pass of the model.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`
|
538 |
+
to compute the spectrogram on-the-fly.
|
539 |
+
l2_norm (bool): Whether to L2-normalize the outputs.
|
540 |
+
|
541 |
+
Shapes:
|
542 |
+
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`
|
543 |
+
"""
|
544 |
+
x.squeeze_(1)
|
545 |
+
# if you torch spec compute it otherwise use the mel spec computed by the AP
|
546 |
+
if self.use_torch_spec:
|
547 |
+
x = self.torch_spec(x)
|
548 |
+
|
549 |
+
if self.log_input:
|
550 |
+
x = (x + 1e-6).log()
|
551 |
+
x = self.instancenorm(x).unsqueeze(1)
|
552 |
+
|
553 |
+
x = self.conv1(x)
|
554 |
+
x = self.relu(x)
|
555 |
+
x = self.bn1(x)
|
556 |
+
|
557 |
+
x = self.layer1(x)
|
558 |
+
x = self.layer2(x)
|
559 |
+
x = self.layer3(x)
|
560 |
+
x = self.layer4(x)
|
561 |
+
|
562 |
+
x = x.reshape(x.size()[0], -1, x.size()[-1])
|
563 |
+
|
564 |
+
w = self.attention(x)
|
565 |
+
|
566 |
+
if self.encoder_type == "SAP":
|
567 |
+
x = torch.sum(x * w, dim=2)
|
568 |
+
elif self.encoder_type == "ASP":
|
569 |
+
mu = torch.sum(x * w, dim=2)
|
570 |
+
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
|
571 |
+
x = torch.cat((mu, sg), 1)
|
572 |
+
|
573 |
+
x = x.view(x.size()[0], -1)
|
574 |
+
x = self.fc(x)
|
575 |
+
|
576 |
+
if l2_norm:
|
577 |
+
x = torch.nn.functional.normalize(x, p=2, dim=1)
|
578 |
+
return x
|
579 |
+
|
580 |
+
def load_checkpoint(
|
581 |
+
self,
|
582 |
+
checkpoint_path: str,
|
583 |
+
eval: bool = False,
|
584 |
+
use_cuda: bool = False,
|
585 |
+
criterion=None,
|
586 |
+
cache=False,
|
587 |
+
):
|
588 |
+
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
|
589 |
+
try:
|
590 |
+
self.load_state_dict(state["model"])
|
591 |
+
print(" > Model fully restored. ")
|
592 |
+
except (KeyError, RuntimeError) as error:
|
593 |
+
# If eval raise the error
|
594 |
+
if eval:
|
595 |
+
raise error
|
596 |
+
|
597 |
+
print(" > Partial model initialization.")
|
598 |
+
model_dict = self.state_dict()
|
599 |
+
model_dict = set_init_dict(model_dict, state["model"])
|
600 |
+
self.load_state_dict(model_dict)
|
601 |
+
del model_dict
|
602 |
+
|
603 |
+
# load the criterion for restore_path
|
604 |
+
if criterion is not None and "criterion" in state:
|
605 |
+
try:
|
606 |
+
criterion.load_state_dict(state["criterion"])
|
607 |
+
except (KeyError, RuntimeError) as error:
|
608 |
+
print(" > Criterion load ignored because of:", error)
|
609 |
+
|
610 |
+
if use_cuda:
|
611 |
+
self.cuda()
|
612 |
+
if criterion is not None:
|
613 |
+
criterion = criterion.cuda()
|
614 |
+
|
615 |
+
if eval:
|
616 |
+
self.eval()
|
617 |
+
assert not self.training
|
618 |
+
|
619 |
+
if not eval:
|
620 |
+
return criterion, state["step"]
|
621 |
+
return criterion
|
622 |
+
|
623 |
+
class HifiDecoder(torch.nn.Module):
|
624 |
+
def __init__(
|
625 |
+
self,
|
626 |
+
input_sample_rate=22050,
|
627 |
+
output_sample_rate=24000,
|
628 |
+
output_hop_length=256,
|
629 |
+
ar_mel_length_compression=1024,
|
630 |
+
decoder_input_dim=1024,
|
631 |
+
resblock_type_decoder="1",
|
632 |
+
resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
633 |
+
resblock_kernel_sizes_decoder=[3, 7, 11],
|
634 |
+
upsample_rates_decoder=[8, 8, 2, 2],
|
635 |
+
upsample_initial_channel_decoder=512,
|
636 |
+
upsample_kernel_sizes_decoder=[16, 16, 4, 4],
|
637 |
+
d_vector_dim=512,
|
638 |
+
cond_d_vector_in_each_upsampling_layer=True,
|
639 |
+
speaker_encoder_audio_config={
|
640 |
+
"fft_size": 512,
|
641 |
+
"win_length": 400,
|
642 |
+
"hop_length": 160,
|
643 |
+
"sample_rate": 16000,
|
644 |
+
"preemphasis": 0.97,
|
645 |
+
"num_mels": 64,
|
646 |
+
},
|
647 |
+
):
|
648 |
+
super().__init__()
|
649 |
+
self.input_sample_rate = input_sample_rate
|
650 |
+
self.output_sample_rate = output_sample_rate
|
651 |
+
self.output_hop_length = output_hop_length
|
652 |
+
self.ar_mel_length_compression = ar_mel_length_compression
|
653 |
+
self.speaker_encoder_audio_config = speaker_encoder_audio_config
|
654 |
+
self.waveform_decoder = HifiganGenerator(
|
655 |
+
decoder_input_dim,
|
656 |
+
1,
|
657 |
+
resblock_type_decoder,
|
658 |
+
resblock_dilation_sizes_decoder,
|
659 |
+
resblock_kernel_sizes_decoder,
|
660 |
+
upsample_kernel_sizes_decoder,
|
661 |
+
upsample_initial_channel_decoder,
|
662 |
+
upsample_rates_decoder,
|
663 |
+
inference_padding=0,
|
664 |
+
cond_channels=d_vector_dim,
|
665 |
+
conv_pre_weight_norm=False,
|
666 |
+
conv_post_weight_norm=False,
|
667 |
+
conv_post_bias=False,
|
668 |
+
cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer,
|
669 |
+
)
|
670 |
+
self.speaker_encoder = ResNetSpeakerEncoder(
|
671 |
+
input_dim=64,
|
672 |
+
proj_dim=512,
|
673 |
+
log_input=True,
|
674 |
+
use_torch_spec=True,
|
675 |
+
audio_config=speaker_encoder_audio_config,
|
676 |
+
)
|
677 |
+
|
678 |
+
@property
|
679 |
+
def device(self):
|
680 |
+
return next(self.parameters()).device
|
681 |
+
|
682 |
+
def forward(self, latents, g=None):
|
683 |
+
"""
|
684 |
+
Args:
|
685 |
+
x (Tensor): feature input tensor (GPT latent).
|
686 |
+
g (Tensor): global conditioning input tensor.
|
687 |
+
|
688 |
+
Returns:
|
689 |
+
Tensor: output waveform.
|
690 |
+
|
691 |
+
Shapes:
|
692 |
+
x: [B, C, T]
|
693 |
+
Tensor: [B, 1, T]
|
694 |
+
"""
|
695 |
+
|
696 |
+
z = torch.nn.functional.interpolate(
|
697 |
+
latents.transpose(1, 2),
|
698 |
+
scale_factor=[self.ar_mel_length_compression / self.output_hop_length],
|
699 |
+
mode="linear",
|
700 |
+
).squeeze(1)
|
701 |
+
# upsample to the right sr
|
702 |
+
if self.output_sample_rate != self.input_sample_rate:
|
703 |
+
z = torch.nn.functional.interpolate(
|
704 |
+
z,
|
705 |
+
scale_factor=[self.output_sample_rate / self.input_sample_rate],
|
706 |
+
mode="linear",
|
707 |
+
).squeeze(0)
|
708 |
+
o = self.waveform_decoder(z, g=g)
|
709 |
+
return o
|
710 |
+
|
711 |
+
@torch.no_grad()
|
712 |
+
def inference(self, c, g):
|
713 |
+
"""
|
714 |
+
Args:
|
715 |
+
x (Tensor): feature input tensor (GPT latent).
|
716 |
+
g (Tensor): global conditioning input tensor.
|
717 |
+
|
718 |
+
Returns:
|
719 |
+
Tensor: output waveform.
|
720 |
+
|
721 |
+
Shapes:
|
722 |
+
x: [B, C, T]
|
723 |
+
Tensor: [B, 1, T]
|
724 |
+
"""
|
725 |
+
return self.forward(c, g=g)
|
726 |
+
|
727 |
+
def load_checkpoint(
|
728 |
+
self, checkpoint_path, eval=False
|
729 |
+
): # pylint: disable=unused-argument, redefined-builtin
|
730 |
+
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
|
731 |
+
# remove unused keys
|
732 |
+
state = state["model"]
|
733 |
+
states_keys = list(state.keys())
|
734 |
+
for key in states_keys:
|
735 |
+
if "waveform_decoder." not in key and "speaker_encoder." not in key:
|
736 |
+
del state[key]
|
737 |
+
|
738 |
+
self.load_state_dict(state)
|
739 |
+
if eval:
|
740 |
+
self.eval()
|
741 |
+
assert not self.training
|
742 |
+
self.waveform_decoder.remove_weight_norm()
|
TTS/TTS/tts/layers/xtts/stream_generator.py
ADDED
@@ -0,0 +1,1057 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/LowinLi/transformers-stream-generator
|
2 |
+
|
3 |
+
from transformers import (
|
4 |
+
GenerationConfig,
|
5 |
+
GenerationMixin,
|
6 |
+
LogitsProcessorList,
|
7 |
+
StoppingCriteriaList,
|
8 |
+
DisjunctiveConstraint,
|
9 |
+
BeamSearchScorer,
|
10 |
+
PhrasalConstraint,
|
11 |
+
ConstrainedBeamSearchScorer,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
import warnings
|
17 |
+
import inspect
|
18 |
+
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
|
19 |
+
import torch
|
20 |
+
from typing import Callable, List, Optional, Union
|
21 |
+
from torch import nn
|
22 |
+
import torch.distributed as dist
|
23 |
+
import copy
|
24 |
+
|
25 |
+
|
26 |
+
def setup_seed(seed):
|
27 |
+
if seed == -1:
|
28 |
+
return
|
29 |
+
torch.manual_seed(seed)
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
torch.cuda.manual_seed_all(seed)
|
32 |
+
np.random.seed(seed)
|
33 |
+
random.seed(seed)
|
34 |
+
torch.backends.cudnn.deterministic = True
|
35 |
+
|
36 |
+
|
37 |
+
class StreamGenerationConfig(GenerationConfig):
|
38 |
+
def __init__(self, **kwargs):
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
self.do_stream = kwargs.pop("do_stream", False)
|
41 |
+
|
42 |
+
|
43 |
+
class NewGenerationMixin(GenerationMixin):
|
44 |
+
@torch.no_grad()
|
45 |
+
def generate(
|
46 |
+
self,
|
47 |
+
inputs: Optional[torch.Tensor] = None,
|
48 |
+
generation_config: Optional[StreamGenerationConfig] = None,
|
49 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
50 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
51 |
+
prefix_allowed_tokens_fn: Optional[
|
52 |
+
Callable[[int, torch.Tensor], List[int]]
|
53 |
+
] = None,
|
54 |
+
synced_gpus: Optional[bool] = False,
|
55 |
+
seed=0,
|
56 |
+
**kwargs,
|
57 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
58 |
+
r"""
|
59 |
+
|
60 |
+
Generates sequences of token ids for models with a language modeling head.
|
61 |
+
|
62 |
+
<Tip warning={true}>
|
63 |
+
|
64 |
+
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
|
65 |
+
model's default generation configuration. You can override any `generation_config` by passing the corresponding
|
66 |
+
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
|
67 |
+
|
68 |
+
For an overview of generation strategies and code examples, check out the [following
|
69 |
+
guide](./generation_strategies).
|
70 |
+
|
71 |
+
</Tip>
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
|
75 |
+
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
|
76 |
+
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
|
77 |
+
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
|
78 |
+
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
|
79 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
80 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
81 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
82 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
83 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
84 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
85 |
+
default values, whose documentation should be checked to parameterize generation.
|
86 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
87 |
+
Custom logits processors that complement the default logits processors built from arguments and
|
88 |
+
generation config. If a logit processor is passed that is already created with the arguments or a
|
89 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
90 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
91 |
+
Custom stopping criteria that complement the default stopping criteria built from arguments and a
|
92 |
+
generation config. If a stopping criteria is passed that is already created with the arguments or a
|
93 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
94 |
+
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
|
95 |
+
If provided, this function constraints the beam search to allowed tokens only at each step. If not
|
96 |
+
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
|
97 |
+
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
|
98 |
+
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
|
99 |
+
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
|
100 |
+
Retrieval](https://arxiv.org/abs/2010.00904).
|
101 |
+
synced_gpus (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
103 |
+
kwargs:
|
104 |
+
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
105 |
+
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
|
106 |
+
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
|
107 |
+
|
108 |
+
Return:
|
109 |
+
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
|
110 |
+
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
|
111 |
+
|
112 |
+
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
|
113 |
+
[`~utils.ModelOutput`] types are:
|
114 |
+
|
115 |
+
- [`~generation.GreedySearchDecoderOnlyOutput`],
|
116 |
+
- [`~generation.SampleDecoderOnlyOutput`],
|
117 |
+
- [`~generation.BeamSearchDecoderOnlyOutput`],
|
118 |
+
- [`~generation.BeamSampleDecoderOnlyOutput`]
|
119 |
+
|
120 |
+
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
|
121 |
+
[`~utils.ModelOutput`] types are:
|
122 |
+
|
123 |
+
- [`~generation.GreedySearchEncoderDecoderOutput`],
|
124 |
+
- [`~generation.SampleEncoderDecoderOutput`],
|
125 |
+
- [`~generation.BeamSearchEncoderDecoderOutput`],
|
126 |
+
- [`~generation.BeamSampleEncoderDecoderOutput`]
|
127 |
+
"""
|
128 |
+
#setup_seed(seed)
|
129 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
130 |
+
self._validate_model_class()
|
131 |
+
|
132 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
133 |
+
if generation_config is None:
|
134 |
+
# legacy: users may modify the model configuration to control generation -- update the generation config
|
135 |
+
# model attribute accordingly, if it was created from the model config
|
136 |
+
if self.generation_config._from_model_config:
|
137 |
+
new_generation_config = StreamGenerationConfig.from_model_config(
|
138 |
+
self.config
|
139 |
+
)
|
140 |
+
if new_generation_config != self.generation_config:
|
141 |
+
warnings.warn(
|
142 |
+
"You have modified the pretrained model configuration to control generation. This is a"
|
143 |
+
" deprecated strategy to control generation and will be removed soon, in a future version."
|
144 |
+
" Please use a generation configuration file (see"
|
145 |
+
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
|
146 |
+
)
|
147 |
+
self.generation_config = new_generation_config
|
148 |
+
generation_config = self.generation_config
|
149 |
+
|
150 |
+
generation_config = copy.deepcopy(generation_config)
|
151 |
+
model_kwargs = generation_config.update(
|
152 |
+
**kwargs
|
153 |
+
) # All unused kwargs must be model kwargs
|
154 |
+
# self._validate_model_kwargs(model_kwargs.copy())
|
155 |
+
|
156 |
+
# 2. Set generation parameters if not already defined
|
157 |
+
logits_processor = (
|
158 |
+
logits_processor if logits_processor is not None else LogitsProcessorList()
|
159 |
+
)
|
160 |
+
stopping_criteria = (
|
161 |
+
stopping_criteria
|
162 |
+
if stopping_criteria is not None
|
163 |
+
else StoppingCriteriaList()
|
164 |
+
)
|
165 |
+
|
166 |
+
if (
|
167 |
+
generation_config.pad_token_id is None
|
168 |
+
and generation_config.eos_token_id is not None
|
169 |
+
):
|
170 |
+
if model_kwargs.get("attention_mask", None) is None:
|
171 |
+
logger.warning(
|
172 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
173 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
174 |
+
)
|
175 |
+
eos_token_id = generation_config.eos_token_id
|
176 |
+
if isinstance(eos_token_id, list):
|
177 |
+
eos_token_id = eos_token_id[0]
|
178 |
+
logger.warning(
|
179 |
+
f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation."
|
180 |
+
)
|
181 |
+
generation_config.pad_token_id = eos_token_id
|
182 |
+
|
183 |
+
# 3. Define model inputs
|
184 |
+
# inputs_tensor has to be defined
|
185 |
+
# model_input_name is defined if model-specific keyword input is passed
|
186 |
+
# otherwise model_input_name is None
|
187 |
+
# all model-specific keyword inputs are removed from `model_kwargs`
|
188 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
189 |
+
inputs, generation_config.bos_token_id, model_kwargs
|
190 |
+
)
|
191 |
+
batch_size = inputs_tensor.shape[0]
|
192 |
+
|
193 |
+
# 4. Define other model kwargs
|
194 |
+
model_kwargs["output_attentions"] = generation_config.output_attentions
|
195 |
+
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
196 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
197 |
+
|
198 |
+
accepts_attention_mask = "attention_mask" in set(
|
199 |
+
inspect.signature(self.forward).parameters.keys()
|
200 |
+
)
|
201 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
202 |
+
|
203 |
+
if (
|
204 |
+
model_kwargs.get("attention_mask", None) is None
|
205 |
+
and requires_attention_mask
|
206 |
+
and accepts_attention_mask
|
207 |
+
):
|
208 |
+
model_kwargs[
|
209 |
+
"attention_mask"
|
210 |
+
] = self._prepare_attention_mask_for_generation(
|
211 |
+
inputs_tensor,
|
212 |
+
generation_config.pad_token_id,
|
213 |
+
generation_config.eos_token_id,
|
214 |
+
)
|
215 |
+
|
216 |
+
# decoder-only models should use left-padding for generation
|
217 |
+
if not self.config.is_encoder_decoder:
|
218 |
+
if (
|
219 |
+
generation_config.pad_token_id is not None
|
220 |
+
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
|
221 |
+
> 0
|
222 |
+
):
|
223 |
+
logger.warning(
|
224 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
225 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
226 |
+
)
|
227 |
+
|
228 |
+
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
|
229 |
+
# if model is encoder decoder encoder_outputs are created
|
230 |
+
# and added to `model_kwargs`
|
231 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
232 |
+
inputs_tensor, model_kwargs, model_input_name
|
233 |
+
)
|
234 |
+
|
235 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
236 |
+
if self.config.is_encoder_decoder:
|
237 |
+
input_ids = self._prepare_decoder_input_ids_for_generation(
|
238 |
+
batch_size,
|
239 |
+
decoder_start_token_id=generation_config.decoder_start_token_id,
|
240 |
+
bos_token_id=generation_config.bos_token_id,
|
241 |
+
model_kwargs=model_kwargs,
|
242 |
+
device=inputs_tensor.device,
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
# if decoder-only then inputs_tensor has to be `input_ids`
|
246 |
+
input_ids = inputs_tensor
|
247 |
+
|
248 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
249 |
+
input_ids_seq_length = input_ids.shape[-1]
|
250 |
+
has_default_max_length = (
|
251 |
+
kwargs.get("max_length") is None
|
252 |
+
and generation_config.max_length is not None
|
253 |
+
)
|
254 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
255 |
+
warnings.warn(
|
256 |
+
"Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to"
|
257 |
+
f" {generation_config.max_length} (`generation_config.max_length`). Controlling `max_length` via the"
|
258 |
+
" config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we"
|
259 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
260 |
+
UserWarning,
|
261 |
+
)
|
262 |
+
elif has_default_max_length and generation_config.max_new_tokens is not None:
|
263 |
+
generation_config.max_length = (
|
264 |
+
generation_config.max_new_tokens + input_ids_seq_length
|
265 |
+
)
|
266 |
+
elif (
|
267 |
+
not has_default_max_length and generation_config.max_new_tokens is not None
|
268 |
+
):
|
269 |
+
raise ValueError(
|
270 |
+
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
|
271 |
+
" limit to the generated output length. Remove one of those arguments. Please refer to the"
|
272 |
+
" documentation for more information. "
|
273 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
274 |
+
)
|
275 |
+
|
276 |
+
if (
|
277 |
+
generation_config.min_length is not None
|
278 |
+
and generation_config.min_length > generation_config.max_length
|
279 |
+
):
|
280 |
+
raise ValueError(
|
281 |
+
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
282 |
+
f" the maximum length ({generation_config.max_length})"
|
283 |
+
)
|
284 |
+
if input_ids_seq_length >= generation_config.max_length:
|
285 |
+
input_ids_string = (
|
286 |
+
"decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
287 |
+
)
|
288 |
+
logger.warning(
|
289 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
290 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
291 |
+
" increasing `max_new_tokens`."
|
292 |
+
)
|
293 |
+
|
294 |
+
# 7. determine generation mode
|
295 |
+
is_constraint_gen_mode = (
|
296 |
+
generation_config.constraints is not None
|
297 |
+
or generation_config.force_words_ids is not None
|
298 |
+
)
|
299 |
+
|
300 |
+
is_contrastive_search_gen_mode = (
|
301 |
+
generation_config.top_k is not None
|
302 |
+
and generation_config.top_k > 1
|
303 |
+
and generation_config.do_sample is False
|
304 |
+
and generation_config.penalty_alpha is not None
|
305 |
+
and generation_config.penalty_alpha > 0
|
306 |
+
)
|
307 |
+
|
308 |
+
is_greedy_gen_mode = (
|
309 |
+
(generation_config.num_beams == 1)
|
310 |
+
and (generation_config.num_beam_groups == 1)
|
311 |
+
and generation_config.do_sample is False
|
312 |
+
and not is_constraint_gen_mode
|
313 |
+
and not is_contrastive_search_gen_mode
|
314 |
+
)
|
315 |
+
is_sample_gen_mode = (
|
316 |
+
(generation_config.num_beams == 1)
|
317 |
+
and (generation_config.num_beam_groups == 1)
|
318 |
+
and generation_config.do_sample is True
|
319 |
+
and generation_config.do_stream is False
|
320 |
+
and not is_constraint_gen_mode
|
321 |
+
and not is_contrastive_search_gen_mode
|
322 |
+
)
|
323 |
+
is_sample_gen_stream_mode = (
|
324 |
+
(generation_config.num_beams == 1)
|
325 |
+
and (generation_config.num_beam_groups == 1)
|
326 |
+
and generation_config.do_stream is True
|
327 |
+
and not is_constraint_gen_mode
|
328 |
+
and not is_contrastive_search_gen_mode
|
329 |
+
)
|
330 |
+
is_beam_gen_mode = (
|
331 |
+
(generation_config.num_beams > 1)
|
332 |
+
and (generation_config.num_beam_groups == 1)
|
333 |
+
and generation_config.do_sample is False
|
334 |
+
and not is_constraint_gen_mode
|
335 |
+
and not is_contrastive_search_gen_mode
|
336 |
+
)
|
337 |
+
is_beam_sample_gen_mode = (
|
338 |
+
(generation_config.num_beams > 1)
|
339 |
+
and (generation_config.num_beam_groups == 1)
|
340 |
+
and generation_config.do_sample is True
|
341 |
+
and not is_constraint_gen_mode
|
342 |
+
and not is_contrastive_search_gen_mode
|
343 |
+
)
|
344 |
+
is_group_beam_gen_mode = (
|
345 |
+
(generation_config.num_beams > 1)
|
346 |
+
and (generation_config.num_beam_groups > 1)
|
347 |
+
and not is_constraint_gen_mode
|
348 |
+
and not is_contrastive_search_gen_mode
|
349 |
+
)
|
350 |
+
|
351 |
+
if generation_config.num_beam_groups > generation_config.num_beams:
|
352 |
+
raise ValueError(
|
353 |
+
"`num_beam_groups` has to be smaller or equal to `num_beams`"
|
354 |
+
)
|
355 |
+
if is_group_beam_gen_mode and generation_config.do_sample is True:
|
356 |
+
raise ValueError(
|
357 |
+
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
|
358 |
+
)
|
359 |
+
|
360 |
+
if self.device.type != input_ids.device.type:
|
361 |
+
warnings.warn(
|
362 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
363 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
364 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
365 |
+
" Please make sure that you have put `input_ids` to the"
|
366 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
367 |
+
" running `.generate()`.",
|
368 |
+
UserWarning,
|
369 |
+
)
|
370 |
+
# 8. prepare distribution pre_processing samplers
|
371 |
+
logits_processor = self._get_logits_processor(
|
372 |
+
generation_config=generation_config,
|
373 |
+
input_ids_seq_length=input_ids_seq_length,
|
374 |
+
encoder_input_ids=inputs_tensor,
|
375 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
376 |
+
logits_processor=logits_processor,
|
377 |
+
)
|
378 |
+
|
379 |
+
# 9. prepare stopping criteria
|
380 |
+
stopping_criteria = self._get_stopping_criteria(
|
381 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
382 |
+
)
|
383 |
+
# 10. go into different generation modes
|
384 |
+
if is_greedy_gen_mode:
|
385 |
+
if generation_config.num_return_sequences > 1:
|
386 |
+
raise ValueError(
|
387 |
+
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
|
388 |
+
" greedy search."
|
389 |
+
)
|
390 |
+
|
391 |
+
# 11. run greedy search
|
392 |
+
return self.greedy_search(
|
393 |
+
input_ids,
|
394 |
+
logits_processor=logits_processor,
|
395 |
+
stopping_criteria=stopping_criteria,
|
396 |
+
pad_token_id=generation_config.pad_token_id,
|
397 |
+
eos_token_id=generation_config.eos_token_id,
|
398 |
+
output_scores=generation_config.output_scores,
|
399 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
400 |
+
synced_gpus=synced_gpus,
|
401 |
+
**model_kwargs,
|
402 |
+
)
|
403 |
+
|
404 |
+
elif is_contrastive_search_gen_mode:
|
405 |
+
if generation_config.num_return_sequences > 1:
|
406 |
+
raise ValueError(
|
407 |
+
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
|
408 |
+
" contrastive search."
|
409 |
+
)
|
410 |
+
|
411 |
+
return self.contrastive_search(
|
412 |
+
input_ids,
|
413 |
+
top_k=generation_config.top_k,
|
414 |
+
penalty_alpha=generation_config.penalty_alpha,
|
415 |
+
logits_processor=logits_processor,
|
416 |
+
stopping_criteria=stopping_criteria,
|
417 |
+
pad_token_id=generation_config.pad_token_id,
|
418 |
+
eos_token_id=generation_config.eos_token_id,
|
419 |
+
output_scores=generation_config.output_scores,
|
420 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
421 |
+
synced_gpus=synced_gpus,
|
422 |
+
**model_kwargs,
|
423 |
+
)
|
424 |
+
|
425 |
+
elif is_sample_gen_mode:
|
426 |
+
# 11. prepare logits warper
|
427 |
+
logits_warper = self._get_logits_warper(generation_config)
|
428 |
+
|
429 |
+
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
430 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
431 |
+
input_ids=input_ids,
|
432 |
+
expand_size=generation_config.num_return_sequences,
|
433 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
434 |
+
**model_kwargs,
|
435 |
+
)
|
436 |
+
|
437 |
+
# 13. run sample
|
438 |
+
return self.sample(
|
439 |
+
input_ids,
|
440 |
+
logits_processor=logits_processor,
|
441 |
+
logits_warper=logits_warper,
|
442 |
+
stopping_criteria=stopping_criteria,
|
443 |
+
pad_token_id=generation_config.pad_token_id,
|
444 |
+
eos_token_id=generation_config.eos_token_id,
|
445 |
+
output_scores=generation_config.output_scores,
|
446 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
447 |
+
synced_gpus=synced_gpus,
|
448 |
+
**model_kwargs,
|
449 |
+
)
|
450 |
+
elif is_sample_gen_stream_mode:
|
451 |
+
# 11. prepare logits warper
|
452 |
+
logits_warper = self._get_logits_warper(generation_config)
|
453 |
+
|
454 |
+
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
455 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
456 |
+
input_ids=input_ids,
|
457 |
+
expand_size=generation_config.num_return_sequences,
|
458 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
459 |
+
**model_kwargs,
|
460 |
+
)
|
461 |
+
|
462 |
+
# 13. run sample
|
463 |
+
return self.sample_stream(
|
464 |
+
input_ids,
|
465 |
+
logits_processor=logits_processor,
|
466 |
+
logits_warper=logits_warper,
|
467 |
+
stopping_criteria=stopping_criteria,
|
468 |
+
pad_token_id=generation_config.pad_token_id,
|
469 |
+
eos_token_id=generation_config.eos_token_id,
|
470 |
+
output_scores=generation_config.output_scores,
|
471 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
472 |
+
synced_gpus=synced_gpus,
|
473 |
+
**model_kwargs,
|
474 |
+
)
|
475 |
+
elif is_beam_gen_mode:
|
476 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
477 |
+
raise ValueError(
|
478 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
479 |
+
)
|
480 |
+
|
481 |
+
if stopping_criteria.max_length is None:
|
482 |
+
raise ValueError(
|
483 |
+
"`max_length` needs to be a stopping_criteria for now."
|
484 |
+
)
|
485 |
+
|
486 |
+
# 11. prepare beam search scorer
|
487 |
+
beam_scorer = BeamSearchScorer(
|
488 |
+
batch_size=batch_size,
|
489 |
+
num_beams=generation_config.num_beams,
|
490 |
+
device=inputs_tensor.device,
|
491 |
+
length_penalty=generation_config.length_penalty,
|
492 |
+
do_early_stopping=generation_config.early_stopping,
|
493 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
494 |
+
)
|
495 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
496 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
497 |
+
input_ids=input_ids,
|
498 |
+
expand_size=generation_config.num_beams,
|
499 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
500 |
+
**model_kwargs,
|
501 |
+
)
|
502 |
+
# 13. run beam search
|
503 |
+
return self.beam_search(
|
504 |
+
input_ids,
|
505 |
+
beam_scorer,
|
506 |
+
logits_processor=logits_processor,
|
507 |
+
stopping_criteria=stopping_criteria,
|
508 |
+
pad_token_id=generation_config.pad_token_id,
|
509 |
+
eos_token_id=generation_config.eos_token_id,
|
510 |
+
output_scores=generation_config.output_scores,
|
511 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
512 |
+
synced_gpus=synced_gpus,
|
513 |
+
**model_kwargs,
|
514 |
+
)
|
515 |
+
|
516 |
+
elif is_beam_sample_gen_mode:
|
517 |
+
# 11. prepare logits warper
|
518 |
+
logits_warper = self._get_logits_warper(generation_config)
|
519 |
+
|
520 |
+
if stopping_criteria.max_length is None:
|
521 |
+
raise ValueError(
|
522 |
+
"`max_length` needs to be a stopping_criteria for now."
|
523 |
+
)
|
524 |
+
# 12. prepare beam search scorer
|
525 |
+
beam_scorer = BeamSearchScorer(
|
526 |
+
batch_size=batch_size * generation_config.num_return_sequences,
|
527 |
+
num_beams=generation_config.num_beams,
|
528 |
+
device=inputs_tensor.device,
|
529 |
+
length_penalty=generation_config.length_penalty,
|
530 |
+
do_early_stopping=generation_config.early_stopping,
|
531 |
+
)
|
532 |
+
|
533 |
+
# 13. interleave input_ids with `num_beams` additional sequences per batch
|
534 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
535 |
+
input_ids=input_ids,
|
536 |
+
expand_size=generation_config.num_beams
|
537 |
+
* generation_config.num_return_sequences,
|
538 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
539 |
+
**model_kwargs,
|
540 |
+
)
|
541 |
+
|
542 |
+
# 14. run beam sample
|
543 |
+
return self.beam_sample(
|
544 |
+
input_ids,
|
545 |
+
beam_scorer,
|
546 |
+
logits_processor=logits_processor,
|
547 |
+
logits_warper=logits_warper,
|
548 |
+
stopping_criteria=stopping_criteria,
|
549 |
+
pad_token_id=generation_config.pad_token_id,
|
550 |
+
eos_token_id=generation_config.eos_token_id,
|
551 |
+
output_scores=generation_config.output_scores,
|
552 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
553 |
+
synced_gpus=synced_gpus,
|
554 |
+
**model_kwargs,
|
555 |
+
)
|
556 |
+
|
557 |
+
elif is_group_beam_gen_mode:
|
558 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
559 |
+
raise ValueError(
|
560 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
561 |
+
)
|
562 |
+
|
563 |
+
if generation_config.num_beams % generation_config.num_beam_groups != 0:
|
564 |
+
raise ValueError(
|
565 |
+
"`num_beams` should be divisible by `num_beam_groups` for group beam search."
|
566 |
+
)
|
567 |
+
|
568 |
+
if stopping_criteria.max_length is None:
|
569 |
+
raise ValueError(
|
570 |
+
"`max_length` needs to be a stopping_criteria for now."
|
571 |
+
)
|
572 |
+
|
573 |
+
has_default_typical_p = (
|
574 |
+
kwargs.get("typical_p") is None and generation_config.typical_p == 1.0
|
575 |
+
)
|
576 |
+
if not has_default_typical_p:
|
577 |
+
raise ValueError(
|
578 |
+
"Decoder argument `typical_p` is not supported with beam groups."
|
579 |
+
)
|
580 |
+
|
581 |
+
# 11. prepare beam search scorer
|
582 |
+
beam_scorer = BeamSearchScorer(
|
583 |
+
batch_size=batch_size,
|
584 |
+
num_beams=generation_config.num_beams,
|
585 |
+
max_length=stopping_criteria.max_length,
|
586 |
+
device=inputs_tensor.device,
|
587 |
+
length_penalty=generation_config.length_penalty,
|
588 |
+
do_early_stopping=generation_config.early_stopping,
|
589 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
590 |
+
num_beam_groups=generation_config.num_beam_groups,
|
591 |
+
)
|
592 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
593 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
594 |
+
input_ids=input_ids,
|
595 |
+
expand_size=generation_config.num_beams,
|
596 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
597 |
+
**model_kwargs,
|
598 |
+
)
|
599 |
+
# 13. run beam search
|
600 |
+
return self.group_beam_search(
|
601 |
+
input_ids,
|
602 |
+
beam_scorer,
|
603 |
+
logits_processor=logits_processor,
|
604 |
+
stopping_criteria=stopping_criteria,
|
605 |
+
pad_token_id=generation_config.pad_token_id,
|
606 |
+
eos_token_id=generation_config.eos_token_id,
|
607 |
+
output_scores=generation_config.output_scores,
|
608 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
609 |
+
synced_gpus=synced_gpus,
|
610 |
+
**model_kwargs,
|
611 |
+
)
|
612 |
+
|
613 |
+
elif is_constraint_gen_mode:
|
614 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
615 |
+
raise ValueError(
|
616 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
617 |
+
)
|
618 |
+
|
619 |
+
if stopping_criteria.max_length is None:
|
620 |
+
raise ValueError(
|
621 |
+
"`max_length` needs to be a stopping_criteria for now."
|
622 |
+
)
|
623 |
+
|
624 |
+
if generation_config.num_beams <= 1:
|
625 |
+
raise ValueError(
|
626 |
+
"`num_beams` needs to be greater than 1 for constrained generation."
|
627 |
+
)
|
628 |
+
|
629 |
+
if generation_config.do_sample:
|
630 |
+
raise ValueError(
|
631 |
+
"`do_sample` needs to be false for constrained generation."
|
632 |
+
)
|
633 |
+
|
634 |
+
if (
|
635 |
+
generation_config.num_beam_groups is not None
|
636 |
+
and generation_config.num_beam_groups > 1
|
637 |
+
):
|
638 |
+
raise ValueError(
|
639 |
+
"`num_beam_groups` not supported yet for constrained generation."
|
640 |
+
)
|
641 |
+
|
642 |
+
final_constraints = []
|
643 |
+
if generation_config.constraints is not None:
|
644 |
+
final_constraints = generation_config.constraints
|
645 |
+
|
646 |
+
if generation_config.force_words_ids is not None:
|
647 |
+
|
648 |
+
def typeerror():
|
649 |
+
raise ValueError(
|
650 |
+
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
|
651 |
+
f"of positive integers, but is {generation_config.force_words_ids}."
|
652 |
+
)
|
653 |
+
|
654 |
+
if (
|
655 |
+
not isinstance(generation_config.force_words_ids, list)
|
656 |
+
or len(generation_config.force_words_ids) == 0
|
657 |
+
):
|
658 |
+
typeerror()
|
659 |
+
|
660 |
+
for word_ids in generation_config.force_words_ids:
|
661 |
+
if isinstance(word_ids[0], list):
|
662 |
+
if not isinstance(word_ids, list) or len(word_ids) == 0:
|
663 |
+
typeerror()
|
664 |
+
if any(
|
665 |
+
not isinstance(token_ids, list) for token_ids in word_ids
|
666 |
+
):
|
667 |
+
typeerror()
|
668 |
+
if any(
|
669 |
+
any(
|
670 |
+
(not isinstance(token_id, int) or token_id < 0)
|
671 |
+
for token_id in token_ids
|
672 |
+
)
|
673 |
+
for token_ids in word_ids
|
674 |
+
):
|
675 |
+
typeerror()
|
676 |
+
|
677 |
+
constraint = DisjunctiveConstraint(word_ids)
|
678 |
+
else:
|
679 |
+
if not isinstance(word_ids, list) or len(word_ids) == 0:
|
680 |
+
typeerror()
|
681 |
+
if any(
|
682 |
+
(not isinstance(token_id, int) or token_id < 0)
|
683 |
+
for token_id in word_ids
|
684 |
+
):
|
685 |
+
typeerror()
|
686 |
+
|
687 |
+
constraint = PhrasalConstraint(word_ids)
|
688 |
+
final_constraints.append(constraint)
|
689 |
+
|
690 |
+
# 11. prepare beam search scorer
|
691 |
+
constrained_beam_scorer = ConstrainedBeamSearchScorer(
|
692 |
+
constraints=final_constraints,
|
693 |
+
batch_size=batch_size,
|
694 |
+
num_beams=generation_config.num_beams,
|
695 |
+
device=inputs_tensor.device,
|
696 |
+
length_penalty=generation_config.length_penalty,
|
697 |
+
do_early_stopping=generation_config.early_stopping,
|
698 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
699 |
+
)
|
700 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
701 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
702 |
+
input_ids=input_ids,
|
703 |
+
expand_size=generation_config.num_beams,
|
704 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
705 |
+
**model_kwargs,
|
706 |
+
)
|
707 |
+
# 13. run beam search
|
708 |
+
return self.constrained_beam_search(
|
709 |
+
input_ids,
|
710 |
+
constrained_beam_scorer=constrained_beam_scorer,
|
711 |
+
logits_processor=logits_processor,
|
712 |
+
stopping_criteria=stopping_criteria,
|
713 |
+
pad_token_id=generation_config.pad_token_id,
|
714 |
+
eos_token_id=generation_config.eos_token_id,
|
715 |
+
output_scores=generation_config.output_scores,
|
716 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
717 |
+
synced_gpus=synced_gpus,
|
718 |
+
**model_kwargs,
|
719 |
+
)
|
720 |
+
|
721 |
+
@torch.no_grad()
|
722 |
+
def sample_stream(
|
723 |
+
self,
|
724 |
+
input_ids: torch.LongTensor,
|
725 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
726 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
727 |
+
logits_warper: Optional[LogitsProcessorList] = None,
|
728 |
+
max_length: Optional[int] = None,
|
729 |
+
pad_token_id: Optional[int] = None,
|
730 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
731 |
+
output_attentions: Optional[bool] = None,
|
732 |
+
output_hidden_states: Optional[bool] = None,
|
733 |
+
output_scores: Optional[bool] = None,
|
734 |
+
return_dict_in_generate: Optional[bool] = None,
|
735 |
+
synced_gpus: Optional[bool] = False,
|
736 |
+
**model_kwargs,
|
737 |
+
) -> Union[SampleOutput, torch.LongTensor]:
|
738 |
+
r"""
|
739 |
+
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
|
740 |
+
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
|
741 |
+
|
742 |
+
<Tip warning={true}>
|
743 |
+
|
744 |
+
In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
|
745 |
+
For an overview of generation strategies and code examples, check the [following
|
746 |
+
guide](./generation_strategies).
|
747 |
+
|
748 |
+
</Tip>
|
749 |
+
|
750 |
+
Parameters:
|
751 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
752 |
+
The sequence used as a prompt for the generation.
|
753 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
754 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
755 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
756 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
757 |
+
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
|
758 |
+
used to tell if the generation loop should stop.
|
759 |
+
logits_warper (`LogitsProcessorList`, *optional*):
|
760 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
|
761 |
+
to warp the prediction score distribution of the language modeling head applied before multinomial
|
762 |
+
sampling at each generation step.
|
763 |
+
max_length (`int`, *optional*, defaults to 20):
|
764 |
+
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
|
765 |
+
tokens. The maximum length of the sequence to be generated.
|
766 |
+
pad_token_id (`int`, *optional*):
|
767 |
+
The id of the *padding* token.
|
768 |
+
eos_token_id (`int`, *optional*):
|
769 |
+
The id of the *end-of-sequence* token.
|
770 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
772 |
+
returned tensors for more details.
|
773 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
774 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
775 |
+
for more details.
|
776 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
777 |
+
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
|
778 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
779 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
780 |
+
synced_gpus (`bool`, *optional*, defaults to `False`):
|
781 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
782 |
+
model_kwargs:
|
783 |
+
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
|
784 |
+
an encoder-decoder model the kwargs should include `encoder_outputs`.
|
785 |
+
|
786 |
+
Return:
|
787 |
+
[`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
|
788 |
+
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
|
789 |
+
[`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
|
790 |
+
`return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
|
791 |
+
`model.config.is_encoder_decoder=True`.
|
792 |
+
|
793 |
+
Examples:
|
794 |
+
|
795 |
+
```python
|
796 |
+
>>> from transformers import (
|
797 |
+
... AutoTokenizer,
|
798 |
+
... AutoModelForCausalLM,
|
799 |
+
... LogitsProcessorList,
|
800 |
+
... MinLengthLogitsProcessor,
|
801 |
+
... TopKLogitsWarper,
|
802 |
+
... TemperatureLogitsWarper,
|
803 |
+
... StoppingCriteriaList,
|
804 |
+
... MaxLengthCriteria,
|
805 |
+
... )
|
806 |
+
>>> import torch
|
807 |
+
|
808 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
809 |
+
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
|
810 |
+
|
811 |
+
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
|
812 |
+
>>> model.config.pad_token_id = model.config.eos_token_id
|
813 |
+
>>> model.generation_config.pad_token_id = model.config.eos_token_id
|
814 |
+
|
815 |
+
>>> input_prompt = "Today is a beautiful day, and"
|
816 |
+
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
|
817 |
+
|
818 |
+
>>> # instantiate logits processors
|
819 |
+
>>> logits_processor = LogitsProcessorList(
|
820 |
+
... [
|
821 |
+
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
|
822 |
+
... ]
|
823 |
+
... )
|
824 |
+
>>> # instantiate logits processors
|
825 |
+
>>> logits_warper = LogitsProcessorList(
|
826 |
+
... [
|
827 |
+
... TopKLogitsWarper(50),
|
828 |
+
... TemperatureLogitsWarper(0.7),
|
829 |
+
... ]
|
830 |
+
... )
|
831 |
+
|
832 |
+
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
|
833 |
+
|
834 |
+
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
|
835 |
+
>>> outputs = model.sample(
|
836 |
+
... input_ids,
|
837 |
+
... logits_processor=logits_processor,
|
838 |
+
... logits_warper=logits_warper,
|
839 |
+
... stopping_criteria=stopping_criteria,
|
840 |
+
... )
|
841 |
+
|
842 |
+
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
843 |
+
['Today is a beautiful day, and a wonderful day.\n\nI was lucky enough to meet the']
|
844 |
+
```"""
|
845 |
+
# init values
|
846 |
+
logits_processor = (
|
847 |
+
logits_processor if logits_processor is not None else LogitsProcessorList()
|
848 |
+
)
|
849 |
+
stopping_criteria = (
|
850 |
+
stopping_criteria
|
851 |
+
if stopping_criteria is not None
|
852 |
+
else StoppingCriteriaList()
|
853 |
+
)
|
854 |
+
if max_length is not None:
|
855 |
+
warnings.warn(
|
856 |
+
"`max_length` is deprecated in this function, use"
|
857 |
+
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
|
858 |
+
UserWarning,
|
859 |
+
)
|
860 |
+
stopping_criteria = validate_stopping_criteria(
|
861 |
+
stopping_criteria, max_length
|
862 |
+
)
|
863 |
+
logits_warper = (
|
864 |
+
logits_warper if logits_warper is not None else LogitsProcessorList()
|
865 |
+
)
|
866 |
+
pad_token_id = (
|
867 |
+
pad_token_id
|
868 |
+
if pad_token_id is not None
|
869 |
+
else self.generation_config.pad_token_id
|
870 |
+
)
|
871 |
+
eos_token_id = (
|
872 |
+
eos_token_id
|
873 |
+
if eos_token_id is not None
|
874 |
+
else self.generation_config.eos_token_id
|
875 |
+
)
|
876 |
+
if isinstance(eos_token_id, int):
|
877 |
+
eos_token_id = [eos_token_id]
|
878 |
+
output_scores = (
|
879 |
+
output_scores
|
880 |
+
if output_scores is not None
|
881 |
+
else self.generation_config.output_scores
|
882 |
+
)
|
883 |
+
output_attentions = (
|
884 |
+
output_attentions
|
885 |
+
if output_attentions is not None
|
886 |
+
else self.generation_config.output_attentions
|
887 |
+
)
|
888 |
+
output_hidden_states = (
|
889 |
+
output_hidden_states
|
890 |
+
if output_hidden_states is not None
|
891 |
+
else self.generation_config.output_hidden_states
|
892 |
+
)
|
893 |
+
return_dict_in_generate = (
|
894 |
+
return_dict_in_generate
|
895 |
+
if return_dict_in_generate is not None
|
896 |
+
else self.generation_config.return_dict_in_generate
|
897 |
+
)
|
898 |
+
|
899 |
+
# init attention / hidden states / scores tuples
|
900 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
901 |
+
decoder_attentions = (
|
902 |
+
() if (return_dict_in_generate and output_attentions) else None
|
903 |
+
)
|
904 |
+
cross_attentions = (
|
905 |
+
() if (return_dict_in_generate and output_attentions) else None
|
906 |
+
)
|
907 |
+
decoder_hidden_states = (
|
908 |
+
() if (return_dict_in_generate and output_hidden_states) else None
|
909 |
+
)
|
910 |
+
|
911 |
+
# keep track of which sequences are already finished
|
912 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
913 |
+
|
914 |
+
this_peer_finished = False # used by synced_gpus only
|
915 |
+
# auto-regressive generation
|
916 |
+
while True:
|
917 |
+
if synced_gpus:
|
918 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
919 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
920 |
+
this_peer_finished_flag = torch.tensor(
|
921 |
+
0.0 if this_peer_finished else 1.0
|
922 |
+
).to(input_ids.device)
|
923 |
+
# send 0.0 if we finished, 1.0 otherwise
|
924 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
925 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
926 |
+
if this_peer_finished_flag.item() == 0.0:
|
927 |
+
break
|
928 |
+
|
929 |
+
# prepare model inputs
|
930 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
931 |
+
|
932 |
+
# forward pass to get next token
|
933 |
+
outputs = self(
|
934 |
+
**model_inputs,
|
935 |
+
return_dict=True,
|
936 |
+
output_attentions=output_attentions,
|
937 |
+
output_hidden_states=output_hidden_states,
|
938 |
+
)
|
939 |
+
|
940 |
+
if synced_gpus and this_peer_finished:
|
941 |
+
continue # don't waste resources running the code we don't need
|
942 |
+
|
943 |
+
next_token_logits = outputs.logits[:, -1, :]
|
944 |
+
|
945 |
+
# pre-process distribution
|
946 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
947 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
948 |
+
|
949 |
+
# Store scores, attentions and hidden_states when required
|
950 |
+
if return_dict_in_generate:
|
951 |
+
if output_scores:
|
952 |
+
scores += (next_token_scores,)
|
953 |
+
if output_attentions:
|
954 |
+
decoder_attentions += (
|
955 |
+
(outputs.decoder_attentions,)
|
956 |
+
if self.config.is_encoder_decoder
|
957 |
+
else (outputs.attentions,)
|
958 |
+
)
|
959 |
+
if self.config.is_encoder_decoder:
|
960 |
+
cross_attentions += (outputs.cross_attentions,)
|
961 |
+
|
962 |
+
if output_hidden_states:
|
963 |
+
decoder_hidden_states += (
|
964 |
+
(outputs.decoder_hidden_states,)
|
965 |
+
if self.config.is_encoder_decoder
|
966 |
+
else (outputs.hidden_states,)
|
967 |
+
)
|
968 |
+
|
969 |
+
# sample
|
970 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
971 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
972 |
+
|
973 |
+
# finished sentences should have their next token be a padding token
|
974 |
+
if eos_token_id is not None:
|
975 |
+
if pad_token_id is None:
|
976 |
+
raise ValueError(
|
977 |
+
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
|
978 |
+
)
|
979 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
980 |
+
1 - unfinished_sequences
|
981 |
+
)
|
982 |
+
yield next_tokens, self.final_norm(outputs.hidden_states[-1][:, -1])
|
983 |
+
# update generated ids, model inputs, and length for next step
|
984 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
985 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
986 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
987 |
+
)
|
988 |
+
|
989 |
+
# if eos_token was found in one sentence, set sentence to finished
|
990 |
+
if eos_token_id is not None:
|
991 |
+
unfinished_sequences = unfinished_sequences.mul(
|
992 |
+
(sum(next_tokens != i for i in eos_token_id)).long()
|
993 |
+
)
|
994 |
+
|
995 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
996 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
997 |
+
if not synced_gpus:
|
998 |
+
break
|
999 |
+
else:
|
1000 |
+
this_peer_finished = True
|
1001 |
+
|
1002 |
+
|
1003 |
+
def init_stream_support():
|
1004 |
+
"""Overload PreTrainedModel for streaming."""
|
1005 |
+
PreTrainedModel.generate_stream = NewGenerationMixin.generate
|
1006 |
+
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
|
1007 |
+
|
1008 |
+
|
1009 |
+
if __name__ == "__main__":
|
1010 |
+
from transformers import PreTrainedModel
|
1011 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
1012 |
+
|
1013 |
+
PreTrainedModel.generate = NewGenerationMixin.generate
|
1014 |
+
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
|
1015 |
+
model = AutoModelForCausalLM.from_pretrained(
|
1016 |
+
"bigscience/bloom-560m", torch_dtype=torch.float16
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
|
1020 |
+
model = model.to("cuda:0")
|
1021 |
+
model = model.eval()
|
1022 |
+
prompt_text = "hello? \n"
|
1023 |
+
input_ids = tokenizer(
|
1024 |
+
prompt_text, return_tensors="pt", add_special_tokens=False
|
1025 |
+
).input_ids
|
1026 |
+
input_ids = input_ids.to("cuda:0")
|
1027 |
+
|
1028 |
+
with torch.no_grad():
|
1029 |
+
result = model.generate(
|
1030 |
+
input_ids,
|
1031 |
+
max_new_tokens=200,
|
1032 |
+
do_sample=True,
|
1033 |
+
top_k=30,
|
1034 |
+
top_p=0.85,
|
1035 |
+
temperature=0.35,
|
1036 |
+
repetition_penalty=1.2,
|
1037 |
+
early_stopping=True,
|
1038 |
+
seed=0,
|
1039 |
+
)
|
1040 |
+
print(tokenizer.decode(result, skip_special_tokens=True))
|
1041 |
+
generator = model.generate(
|
1042 |
+
input_ids,
|
1043 |
+
max_new_tokens=200,
|
1044 |
+
do_sample=True,
|
1045 |
+
top_k=30,
|
1046 |
+
top_p=0.85,
|
1047 |
+
temperature=0.35,
|
1048 |
+
repetition_penalty=1.2,
|
1049 |
+
early_stopping=True,
|
1050 |
+
seed=0,
|
1051 |
+
do_stream=True,
|
1052 |
+
)
|
1053 |
+
stream_result = ""
|
1054 |
+
for x in generator:
|
1055 |
+
chunk = tokenizer.decode(x, skip_special_tokens=True)
|
1056 |
+
stream_result += chunk
|
1057 |
+
print(stream_result)
|
TTS/TTS/tts/layers/xtts/tokenizer.py
CHANGED
@@ -1,206 +1,468 @@
|
|
1 |
-
import json
|
2 |
import os
|
3 |
import re
|
|
|
4 |
|
5 |
-
import inflect
|
6 |
-
import pandas as pd
|
7 |
-
import pypinyin
|
8 |
import torch
|
9 |
-
from num2words import num2words
|
10 |
from tokenizers import Tokenizer
|
11 |
-
from unidecode import unidecode
|
12 |
-
|
13 |
-
from TTS.tts.utils.text.cleaners import english_cleaners
|
14 |
-
|
15 |
-
_inflect = inflect.engine()
|
16 |
-
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
17 |
-
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
18 |
-
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
19 |
-
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
20 |
-
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
21 |
-
_number_re = re.compile(r"[0-9]+")
|
22 |
-
|
23 |
-
|
24 |
-
def _remove_commas(m):
|
25 |
-
return m.group(1).replace(",", "")
|
26 |
-
|
27 |
-
|
28 |
-
def _expand_decimal_point(m):
|
29 |
-
return m.group(1).replace(".", " point ")
|
30 |
-
|
31 |
-
|
32 |
-
def _expand_dollars(m):
|
33 |
-
match = m.group(1)
|
34 |
-
parts = match.split(".")
|
35 |
-
if len(parts) > 2:
|
36 |
-
return match + " dollars" # Unexpected format
|
37 |
-
dollars = int(parts[0]) if parts[0] else 0
|
38 |
-
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
39 |
-
if dollars and cents:
|
40 |
-
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
41 |
-
cent_unit = "cent" if cents == 1 else "cents"
|
42 |
-
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
43 |
-
elif dollars:
|
44 |
-
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
45 |
-
return "%s %s" % (dollars, dollar_unit)
|
46 |
-
elif cents:
|
47 |
-
cent_unit = "cent" if cents == 1 else "cents"
|
48 |
-
return "%s %s" % (cents, cent_unit)
|
49 |
-
else:
|
50 |
-
return "zero dollars"
|
51 |
-
|
52 |
-
|
53 |
-
def _expand_ordinal(m):
|
54 |
-
return _inflect.number_to_words(m.group(0))
|
55 |
-
|
56 |
-
|
57 |
-
def _expand_number(m):
|
58 |
-
num = int(m.group(0))
|
59 |
-
if num > 1000 and num < 3000:
|
60 |
-
if num == 2000:
|
61 |
-
return "two thousand"
|
62 |
-
elif num > 2000 and num < 2010:
|
63 |
-
return "two thousand " + _inflect.number_to_words(num % 100)
|
64 |
-
elif num % 100 == 0:
|
65 |
-
return _inflect.number_to_words(num // 100) + " hundred"
|
66 |
-
else:
|
67 |
-
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
|
68 |
-
else:
|
69 |
-
return _inflect.number_to_words(num, andword="")
|
70 |
-
|
71 |
-
|
72 |
-
def normalize_numbers(text):
|
73 |
-
text = re.sub(_comma_number_re, _remove_commas, text)
|
74 |
-
text = re.sub(_pounds_re, r"\1 pounds", text)
|
75 |
-
text = re.sub(_dollars_re, _expand_dollars, text)
|
76 |
-
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
77 |
-
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
78 |
-
text = re.sub(_number_re, _expand_number, text)
|
79 |
-
return text
|
80 |
|
|
|
|
|
|
|
81 |
|
82 |
-
# Regular expression matching whitespace:
|
83 |
_whitespace_re = re.compile(r"\s+")
|
84 |
|
85 |
# List of (regular expression, replacement) pairs for abbreviations:
|
86 |
-
_abbreviations =
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
]
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
text = re.sub(regex, replacement, text)
|
114 |
return text
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
def lowercase(text):
|
122 |
-
return text.lower()
|
123 |
-
|
124 |
-
|
125 |
-
def collapse_whitespace(text):
|
126 |
-
return re.sub(_whitespace_re, " ", text)
|
127 |
-
|
128 |
-
|
129 |
-
def convert_to_ascii(text):
|
130 |
-
return unidecode(text)
|
131 |
-
|
132 |
|
133 |
-
def
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
text = text.replace('"', "")
|
138 |
return text
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
numbers = re.findall(r"\d+", text)
|
145 |
-
|
146 |
-
# Transliterate the numbers to text
|
147 |
-
for num in numbers:
|
148 |
-
transliterated_num = "".join(num2words(num, lang=lang))
|
149 |
-
text = text.replace(num, transliterated_num, 1)
|
150 |
-
|
151 |
return text
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
return text
|
160 |
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
def multilingual_cleaners(text, lang):
|
163 |
-
text =
|
164 |
-
|
165 |
-
text = collapse_whitespace(text)
|
166 |
-
text = text.replace('"', "")
|
167 |
-
if lang == "tr":
|
168 |
text = text.replace("İ", "i")
|
169 |
text = text.replace("Ö", "ö")
|
170 |
text = text.replace("Ü", "ü")
|
|
|
|
|
|
|
|
|
|
|
171 |
return text
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
replacement_punctuation = {"{": "(", "}": ")", "[": "(", "]": ")", "`": "'", "—": "-", "—": "-", "`": "'", "ʼ": "'"}
|
176 |
-
replace = re.compile(
|
177 |
-
"|".join([re.escape(k) for k in sorted(replacement_punctuation, key=len, reverse=True)]), flags=re.DOTALL
|
178 |
-
)
|
179 |
-
word = replace.sub(lambda x: replacement_punctuation[x.group(0)], word)
|
180 |
-
|
181 |
-
# TODO: some of these are spoken ('@', '%', '+', etc). Integrate them into the cleaners.
|
182 |
-
extraneous = re.compile(r"^[@#%_=\$\^&\*\+\\]$")
|
183 |
-
word = extraneous.sub("", word)
|
184 |
-
return word
|
185 |
-
|
186 |
-
|
187 |
-
def arabic_cleaners(text):
|
188 |
text = lowercase(text)
|
189 |
text = collapse_whitespace(text)
|
190 |
return text
|
191 |
|
|
|
|
|
192 |
|
193 |
-
def
|
|
|
194 |
text = lowercase(text)
|
195 |
-
text = "".join(
|
196 |
-
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
|
197 |
-
)
|
198 |
return text
|
199 |
|
200 |
-
|
201 |
class VoiceBpeTokenizer:
|
202 |
def __init__(self, vocab_file=None, preprocess=None):
|
203 |
self.tokenizer = None
|
|
|
204 |
|
205 |
if vocab_file is not None:
|
206 |
with open(vocab_file, "r", encoding="utf-8") as f:
|
@@ -216,21 +478,20 @@ class VoiceBpeTokenizer:
|
|
216 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
217 |
|
218 |
def preprocess_text(self, txt, lang):
|
219 |
-
if lang
|
220 |
-
import pykakasi
|
221 |
-
|
222 |
-
kks = pykakasi.kakasi()
|
223 |
-
results = kks.convert(txt)
|
224 |
-
txt = " ".join([result["kana"] for result in results])
|
225 |
-
txt = basic_cleaners(txt)
|
226 |
-
elif lang == "en":
|
227 |
-
txt = english_cleaners(txt)
|
228 |
-
elif lang == "ar":
|
229 |
-
txt = arabic_cleaners(txt)
|
230 |
-
elif lang == "zh-cn":
|
231 |
-
txt = chinese_cleaners(txt)
|
232 |
-
else:
|
233 |
txt = multilingual_cleaners(txt, lang)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
return txt
|
235 |
|
236 |
def encode(self, txt, lang):
|
@@ -247,3 +508,9 @@ class VoiceBpeTokenizer:
|
|
247 |
txt = txt.replace("[STOP]", "")
|
248 |
txt = txt.replace("[UNK]", "")
|
249 |
return txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
import json
|
4 |
|
|
|
|
|
|
|
5 |
import torch
|
|
|
6 |
from tokenizers import Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
import pypinyin
|
9 |
+
from num2words import num2words
|
10 |
+
from TTS.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
|
11 |
|
|
|
12 |
_whitespace_re = re.compile(r"\s+")
|
13 |
|
14 |
# List of (regular expression, replacement) pairs for abbreviations:
|
15 |
+
_abbreviations = {
|
16 |
+
"en": [
|
17 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
18 |
+
for x in [
|
19 |
+
("mrs", "misess"),
|
20 |
+
("mr", "mister"),
|
21 |
+
("dr", "doctor"),
|
22 |
+
("st", "saint"),
|
23 |
+
("co", "company"),
|
24 |
+
("jr", "junior"),
|
25 |
+
("maj", "major"),
|
26 |
+
("gen", "general"),
|
27 |
+
("drs", "doctors"),
|
28 |
+
("rev", "reverend"),
|
29 |
+
("lt", "lieutenant"),
|
30 |
+
("hon", "honorable"),
|
31 |
+
("sgt", "sergeant"),
|
32 |
+
("capt", "captain"),
|
33 |
+
("esq", "esquire"),
|
34 |
+
("ltd", "limited"),
|
35 |
+
("col", "colonel"),
|
36 |
+
("ft", "fort"),
|
37 |
+
]
|
38 |
+
],
|
39 |
+
"es": [
|
40 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
41 |
+
for x in [
|
42 |
+
("sra", "señora"),
|
43 |
+
("sr", "señor"),
|
44 |
+
("dr", "doctor"),
|
45 |
+
("dra", "doctora"),
|
46 |
+
("st", "santo"),
|
47 |
+
("co", "compañía"),
|
48 |
+
("jr", "junior"),
|
49 |
+
("ltd", "limitada"),
|
50 |
+
]
|
51 |
+
],
|
52 |
+
"fr": [
|
53 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
54 |
+
for x in [
|
55 |
+
("mme", "madame"),
|
56 |
+
("mr", "monsieur"),
|
57 |
+
("dr", "docteur"),
|
58 |
+
("st", "saint"),
|
59 |
+
("co", "compagnie"),
|
60 |
+
("jr", "junior"),
|
61 |
+
("ltd", "limitée"),
|
62 |
+
]
|
63 |
+
],
|
64 |
+
"de": [
|
65 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
66 |
+
for x in [
|
67 |
+
("fr", "frau"),
|
68 |
+
("dr", "doktor"),
|
69 |
+
("st", "sankt"),
|
70 |
+
("co", "firma"),
|
71 |
+
("jr", "junior"),
|
72 |
+
]
|
73 |
+
],
|
74 |
+
"pt": [
|
75 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
76 |
+
for x in [
|
77 |
+
("sra", "senhora"),
|
78 |
+
("sr", "senhor"),
|
79 |
+
("dr", "doutor"),
|
80 |
+
("dra", "doutora"),
|
81 |
+
("st", "santo"),
|
82 |
+
("co", "companhia"),
|
83 |
+
("jr", "júnior"),
|
84 |
+
("ltd", "limitada"),
|
85 |
+
]
|
86 |
+
],
|
87 |
+
"it": [
|
88 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
89 |
+
for x in [
|
90 |
+
#("sig.ra", "signora"),
|
91 |
+
("sig", "signore"),
|
92 |
+
("dr", "dottore"),
|
93 |
+
("st", "santo"),
|
94 |
+
("co", "compagnia"),
|
95 |
+
("jr", "junior"),
|
96 |
+
("ltd", "limitata"),
|
97 |
+
]
|
98 |
+
],
|
99 |
+
"pl": [
|
100 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
101 |
+
for x in [
|
102 |
+
("p", "pani"),
|
103 |
+
("m", "pan"),
|
104 |
+
("dr", "doktor"),
|
105 |
+
("sw", "święty"),
|
106 |
+
("jr", "junior"),
|
107 |
+
]
|
108 |
+
],
|
109 |
+
"ar": [
|
110 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
111 |
+
for x in [
|
112 |
+
# There are not many common abbreviations in Arabic as in English.
|
113 |
+
]
|
114 |
+
],
|
115 |
+
"zh-cn": [
|
116 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
117 |
+
for x in [
|
118 |
+
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
|
119 |
+
]
|
120 |
+
],
|
121 |
+
"cs": [
|
122 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
123 |
+
for x in [
|
124 |
+
("dr", "doktor"), # doctor
|
125 |
+
("ing", "inženýr"), # engineer
|
126 |
+
("p", "pan"), # Could also map to pani for woman but no easy way to do it
|
127 |
+
# Other abbreviations would be specialized and not as common.
|
128 |
+
]
|
129 |
+
],
|
130 |
+
"ru": [
|
131 |
+
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
|
132 |
+
for x in [
|
133 |
+
("г-жа", "госпожа"), # Mrs.
|
134 |
+
("г-н", "господин"), # Mr.
|
135 |
+
("д-р", "доктор"), # doctor
|
136 |
+
# Other abbreviations are less common or specialized.
|
137 |
+
]
|
138 |
+
],
|
139 |
+
"nl": [
|
140 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
141 |
+
for x in [
|
142 |
+
("dhr", "de heer"), # Mr.
|
143 |
+
("mevr", "mevrouw"), # Mrs.
|
144 |
+
("dr", "dokter"), # doctor
|
145 |
+
("jhr", "jonkheer"), # young lord or nobleman
|
146 |
+
# Dutch uses more abbreviations, but these are the most common ones.
|
147 |
+
]
|
148 |
+
],
|
149 |
+
"tr": [
|
150 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
151 |
+
for x in [
|
152 |
+
("b", "bay"), # Mr.
|
153 |
+
("byk", "büyük"), # büyük
|
154 |
+
("dr", "doktor"), # doctor
|
155 |
+
# Add other Turkish abbreviations here if needed.
|
156 |
+
]
|
157 |
+
],
|
158 |
+
}
|
159 |
+
|
160 |
+
def expand_abbreviations_multilingual(text, lang='en'):
|
161 |
+
for regex, replacement in _abbreviations[lang]:
|
162 |
text = re.sub(regex, replacement, text)
|
163 |
return text
|
164 |
|
165 |
+
_symbols_multilingual = {
|
166 |
+
'en': [
|
167 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
168 |
+
for x in [
|
169 |
+
("&", " and "),
|
170 |
+
("@", " at "),
|
171 |
+
("%", " percent "),
|
172 |
+
("#", " hash "),
|
173 |
+
("$", " dollar "),
|
174 |
+
("£", " pound "),
|
175 |
+
("°", " degree ")
|
176 |
+
]
|
177 |
+
],
|
178 |
+
'es': [
|
179 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
180 |
+
for x in [
|
181 |
+
("&", " y "),
|
182 |
+
("@", " arroba "),
|
183 |
+
("%", " por ciento "),
|
184 |
+
("#", " numeral "),
|
185 |
+
("$", " dolar "),
|
186 |
+
("£", " libra "),
|
187 |
+
("°", " grados ")
|
188 |
+
]
|
189 |
+
],
|
190 |
+
'fr': [
|
191 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
192 |
+
for x in [
|
193 |
+
("&", " et "),
|
194 |
+
("@", " arobase "),
|
195 |
+
("%", " pour cent "),
|
196 |
+
("#", " dièse "),
|
197 |
+
("$", " dollar "),
|
198 |
+
("£", " livre "),
|
199 |
+
("°", " degrés ")
|
200 |
+
]
|
201 |
+
],
|
202 |
+
'de': [
|
203 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
204 |
+
for x in [
|
205 |
+
("&", " und "),
|
206 |
+
("@", " at "),
|
207 |
+
("%", " prozent "),
|
208 |
+
("#", " raute "),
|
209 |
+
("$", " dollar "),
|
210 |
+
("£", " pfund "),
|
211 |
+
("°", " grad ")
|
212 |
+
]
|
213 |
+
],
|
214 |
+
'pt': [
|
215 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
216 |
+
for x in [
|
217 |
+
("&", " e "),
|
218 |
+
("@", " arroba "),
|
219 |
+
("%", " por cento "),
|
220 |
+
("#", " cardinal "),
|
221 |
+
("$", " dólar "),
|
222 |
+
("£", " libra "),
|
223 |
+
("°", " graus ")
|
224 |
+
]
|
225 |
+
],
|
226 |
+
'it': [
|
227 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
228 |
+
for x in [
|
229 |
+
("&", " e "),
|
230 |
+
("@", " chiocciola "),
|
231 |
+
("%", " per cento "),
|
232 |
+
("#", " cancelletto "),
|
233 |
+
("$", " dollaro "),
|
234 |
+
("£", " sterlina "),
|
235 |
+
("°", " gradi ")
|
236 |
+
]
|
237 |
+
],
|
238 |
+
'pl': [
|
239 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
240 |
+
for x in [
|
241 |
+
("&", " i "),
|
242 |
+
("@", " małpa "),
|
243 |
+
("%", " procent "),
|
244 |
+
("#", " krzyżyk "),
|
245 |
+
("$", " dolar "),
|
246 |
+
("£", " funt "),
|
247 |
+
("°", " stopnie ")
|
248 |
+
]
|
249 |
+
],
|
250 |
+
"ar": [
|
251 |
+
# Arabic
|
252 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
253 |
+
for x in [
|
254 |
+
("&", " و "),
|
255 |
+
("@", " على "),
|
256 |
+
("%", " في المئة "),
|
257 |
+
("#", " رقم "),
|
258 |
+
("$", " دولار "),
|
259 |
+
("£", " جنيه "),
|
260 |
+
("°", " درجة ")
|
261 |
+
]
|
262 |
+
],
|
263 |
+
"zh-cn": [
|
264 |
+
# Chinese
|
265 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
266 |
+
for x in [
|
267 |
+
("&", " 和 "),
|
268 |
+
("@", " 在 "),
|
269 |
+
("%", " 百分之 "),
|
270 |
+
("#", " 号 "),
|
271 |
+
("$", " 美元 "),
|
272 |
+
("£", " 英镑 "),
|
273 |
+
("°", " 度 ")
|
274 |
+
]
|
275 |
+
],
|
276 |
+
"cs": [
|
277 |
+
# Czech
|
278 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
279 |
+
for x in [
|
280 |
+
("&", " a "),
|
281 |
+
("@", " na "),
|
282 |
+
("%", " procento "),
|
283 |
+
("#", " křížek "),
|
284 |
+
("$", " dolar "),
|
285 |
+
("£", " libra "),
|
286 |
+
("°", " stupně ")
|
287 |
+
]
|
288 |
+
],
|
289 |
+
"ru": [
|
290 |
+
# Russian
|
291 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
292 |
+
for x in [
|
293 |
+
("&", " и "),
|
294 |
+
("@", " собака "),
|
295 |
+
("%", " процентов "),
|
296 |
+
("#", " номер "),
|
297 |
+
("$", " доллар "),
|
298 |
+
("£", " фунт "),
|
299 |
+
("°", " градус ")
|
300 |
+
]
|
301 |
+
],
|
302 |
+
"nl": [
|
303 |
+
# Dutch
|
304 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
305 |
+
for x in [
|
306 |
+
("&", " en "),
|
307 |
+
("@", " bij "),
|
308 |
+
("%", " procent "),
|
309 |
+
("#", " hekje "),
|
310 |
+
("$", " dollar "),
|
311 |
+
("£", " pond "),
|
312 |
+
("°", " graden ")
|
313 |
+
]
|
314 |
+
],
|
315 |
+
"tr": [
|
316 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
317 |
+
for x in [
|
318 |
+
("&", " ve "),
|
319 |
+
("@", " at "),
|
320 |
+
("%", " yüzde "),
|
321 |
+
("#", " diyez "),
|
322 |
+
("$", " dolar "),
|
323 |
+
("£", " sterlin "),
|
324 |
+
("°", " derece ")
|
325 |
+
]
|
326 |
+
],
|
327 |
+
}
|
328 |
+
|
329 |
+
def expand_symbols_multilingual(text, lang='en'):
|
330 |
+
for regex, replacement in _symbols_multilingual[lang]:
|
331 |
+
text = re.sub(regex, replacement, text)
|
332 |
+
text = text.replace(' ', ' ') # Ensure there are no double spaces
|
333 |
+
return text.strip()
|
334 |
+
|
335 |
+
|
336 |
+
_ordinal_re = {
|
337 |
+
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
|
338 |
+
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
|
339 |
+
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
|
340 |
+
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
|
341 |
+
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
|
342 |
+
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
|
343 |
+
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
|
344 |
+
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
|
345 |
+
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
|
346 |
+
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
|
347 |
+
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
|
348 |
+
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
|
349 |
+
}
|
350 |
+
_number_re = re.compile(r"[0-9]+")
|
351 |
+
_currency_re = {
|
352 |
+
'USD': re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
|
353 |
+
'GBP': re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
|
354 |
+
'EUR': re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))")
|
355 |
+
}
|
356 |
|
357 |
+
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
|
358 |
+
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
|
359 |
+
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
+
def _remove_commas(m):
|
362 |
+
text = m.group(0)
|
363 |
+
if "," in text:
|
364 |
+
text = text.replace(",", "")
|
|
|
365 |
return text
|
366 |
|
367 |
+
def _remove_dots(m):
|
368 |
+
text = m.group(0)
|
369 |
+
if "." in text:
|
370 |
+
text = text.replace(".", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
return text
|
372 |
|
373 |
+
def _expand_decimal_point(m, lang='en'):
|
374 |
+
amount = m.group(1).replace(",", ".")
|
375 |
+
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
|
376 |
+
|
377 |
+
def _expand_currency(m, lang='en', currency='USD'):
|
378 |
+
amount = float((re.sub(r'[^\d.]', '', m.group(0).replace(",", "."))))
|
379 |
+
full_amount = num2words(amount, to='currency', currency=currency, lang=lang if lang != "cs" else "cz")
|
380 |
+
|
381 |
+
and_equivalents = {
|
382 |
+
"en": ", ",
|
383 |
+
"es": " con ",
|
384 |
+
"fr": " et ",
|
385 |
+
"de": " und ",
|
386 |
+
"pt": " e ",
|
387 |
+
"it": " e ",
|
388 |
+
"pl": ", ",
|
389 |
+
"cs": ", ",
|
390 |
+
"ru": ", ",
|
391 |
+
"nl": ", ",
|
392 |
+
"ar": ", ",
|
393 |
+
"tr": ", ",
|
394 |
+
}
|
395 |
+
|
396 |
+
if amount.is_integer():
|
397 |
+
last_and = full_amount.rfind(and_equivalents[lang])
|
398 |
+
if last_and != -1:
|
399 |
+
full_amount = full_amount[:last_and]
|
400 |
+
|
401 |
+
return full_amount
|
402 |
+
|
403 |
+
def _expand_ordinal(m, lang='en'):
|
404 |
+
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
|
405 |
+
|
406 |
+
def _expand_number(m, lang='en'):
|
407 |
+
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
|
408 |
+
|
409 |
+
def expand_numbers_multilingual(text, lang='en'):
|
410 |
+
if lang == "zh-cn":
|
411 |
+
text = zh_num2words()(text)
|
412 |
+
else:
|
413 |
+
if lang in ["en", "ru"]:
|
414 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
415 |
+
else:
|
416 |
+
text = re.sub(_dot_number_re, _remove_dots, text)
|
417 |
+
try:
|
418 |
+
text = re.sub(_currency_re['GBP'], lambda m: _expand_currency(m, lang, 'GBP'), text)
|
419 |
+
text = re.sub(_currency_re['USD'], lambda m: _expand_currency(m, lang, 'USD'), text)
|
420 |
+
text = re.sub(_currency_re['EUR'], lambda m: _expand_currency(m, lang, 'EUR'), text)
|
421 |
+
except:
|
422 |
+
pass
|
423 |
+
if lang != "tr":
|
424 |
+
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
|
425 |
+
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
|
426 |
+
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
|
427 |
return text
|
428 |
|
429 |
+
def lowercase(text):
|
430 |
+
return text.lower()
|
431 |
+
|
432 |
+
def collapse_whitespace(text):
|
433 |
+
return re.sub(_whitespace_re, " ", text)
|
434 |
|
435 |
def multilingual_cleaners(text, lang):
|
436 |
+
text = text.replace('"', '')
|
437 |
+
if lang=="tr":
|
|
|
|
|
|
|
438 |
text = text.replace("İ", "i")
|
439 |
text = text.replace("Ö", "ö")
|
440 |
text = text.replace("Ü", "ü")
|
441 |
+
text = lowercase(text)
|
442 |
+
text = expand_numbers_multilingual(text, lang)
|
443 |
+
text = expand_abbreviations_multilingual(text, lang)
|
444 |
+
text = expand_symbols_multilingual(text, lang=lang)
|
445 |
+
text = collapse_whitespace(text)
|
446 |
return text
|
447 |
|
448 |
+
def basic_cleaners(text):
|
449 |
+
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
text = lowercase(text)
|
451 |
text = collapse_whitespace(text)
|
452 |
return text
|
453 |
|
454 |
+
def chinese_transliterate(text):
|
455 |
+
return "".join([p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)])
|
456 |
|
457 |
+
def japanese_cleaners(text, katsu):
|
458 |
+
text = katsu.romaji(text)
|
459 |
text = lowercase(text)
|
|
|
|
|
|
|
460 |
return text
|
461 |
|
|
|
462 |
class VoiceBpeTokenizer:
|
463 |
def __init__(self, vocab_file=None, preprocess=None):
|
464 |
self.tokenizer = None
|
465 |
+
self.katsu = None
|
466 |
|
467 |
if vocab_file is not None:
|
468 |
with open(vocab_file, "r", encoding="utf-8") as f:
|
|
|
478 |
self.tokenizer = Tokenizer.from_file(vocab_file)
|
479 |
|
480 |
def preprocess_text(self, txt, lang):
|
481 |
+
if lang in ["en", "es", "fr", "de", "pt", "it", "pl", "ar", "cs", "ru", "nl", "tr", "zh-cn"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
txt = multilingual_cleaners(txt, lang)
|
483 |
+
if lang == "zh-cn":
|
484 |
+
txt = chinese_transliterate(txt)
|
485 |
+
elif lang == "ja":
|
486 |
+
assert txt[:4] == "[ja]", "Japanese speech should start with the [ja] token."
|
487 |
+
txt = txt[4:]
|
488 |
+
if self.katsu is None:
|
489 |
+
import cutlet
|
490 |
+
self.katsu = cutlet.Cutlet()
|
491 |
+
txt = japanese_cleaners(txt, self.katsu)
|
492 |
+
txt = "[ja]" + txt
|
493 |
+
else:
|
494 |
+
raise NotImplementedError()
|
495 |
return txt
|
496 |
|
497 |
def encode(self, txt, lang):
|
|
|
508 |
txt = txt.replace("[STOP]", "")
|
509 |
txt = txt.replace("[UNK]", "")
|
510 |
return txt
|
511 |
+
|
512 |
+
def __len__(self):
|
513 |
+
return self.tokenizer.get_vocab_size()
|
514 |
+
|
515 |
+
def get_number_tokens(self):
|
516 |
+
return max(self.tokenizer.get_vocab().values()) + 1
|
TTS/TTS/tts/layers/xtts/zh_num2words.py
ADDED
@@ -0,0 +1,1207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors:
|
2 |
+
# 2019.5 Zhiyang Zhou (https://github.com/Joee1995/chn_text_norm.git)
|
3 |
+
# 2019.9 - 2022 Jiayu DU
|
4 |
+
|
5 |
+
import sys, os, argparse
|
6 |
+
import string, re
|
7 |
+
import csv
|
8 |
+
|
9 |
+
# ================================================================================ #
|
10 |
+
# basic constant
|
11 |
+
# ================================================================================ #
|
12 |
+
CHINESE_DIGIS = u'零一二三四五六七八九'
|
13 |
+
BIG_CHINESE_DIGIS_SIMPLIFIED = u'零壹贰叁肆伍陆柒捌玖'
|
14 |
+
BIG_CHINESE_DIGIS_TRADITIONAL = u'零壹貳參肆伍陸柒捌玖'
|
15 |
+
SMALLER_BIG_CHINESE_UNITS_SIMPLIFIED = u'十百千万'
|
16 |
+
SMALLER_BIG_CHINESE_UNITS_TRADITIONAL = u'拾佰仟萬'
|
17 |
+
LARGER_CHINESE_NUMERING_UNITS_SIMPLIFIED = u'亿兆京垓秭穰沟涧正载'
|
18 |
+
LARGER_CHINESE_NUMERING_UNITS_TRADITIONAL = u'億兆京垓秭穰溝澗正載'
|
19 |
+
SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED = u'十百千万'
|
20 |
+
SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL = u'拾佰仟萬'
|
21 |
+
|
22 |
+
ZERO_ALT = u'〇'
|
23 |
+
ONE_ALT = u'幺'
|
24 |
+
TWO_ALTS = [u'两', u'兩']
|
25 |
+
|
26 |
+
POSITIVE = [u'正', u'正']
|
27 |
+
NEGATIVE = [u'负', u'負']
|
28 |
+
POINT = [u'点', u'點']
|
29 |
+
# PLUS = [u'加', u'加']
|
30 |
+
# SIL = [u'杠', u'槓']
|
31 |
+
|
32 |
+
FILLER_CHARS = ['呃', '啊']
|
33 |
+
|
34 |
+
ER_WHITELIST = '(儿女|儿子|儿孙|女儿|儿媳|妻儿|' \
|
35 |
+
'胎儿|婴儿|新生儿|婴幼儿|幼儿|少儿|小儿|儿歌|儿童|儿科|托儿所|孤儿|' \
|
36 |
+
'儿戏|儿化|台儿庄|鹿儿岛|正儿八经|吊儿郎当|生儿育女|托儿带女|养儿防老|痴儿呆女|' \
|
37 |
+
'佳儿佳妇|儿怜兽扰|儿无常父|儿不嫌母丑|儿行千里母担忧|儿大不由爷|苏乞儿)'
|
38 |
+
ER_WHITELIST_PATTERN = re.compile(ER_WHITELIST)
|
39 |
+
|
40 |
+
# 中文数字系统类型
|
41 |
+
NUMBERING_TYPES = ['low', 'mid', 'high']
|
42 |
+
|
43 |
+
CURRENCY_NAMES = '(人民币|美元|日元|英镑|欧元|马克|法郎|加拿大元|澳元|港币|先令|芬兰马克|爱尔兰镑|' \
|
44 |
+
'里拉|荷兰盾|埃斯库多|比塞塔|印尼盾|林吉特|新西兰元|比索|卢布|新加坡元|韩元|泰铢)'
|
45 |
+
CURRENCY_UNITS = '((亿|千万|百万|万|千|百)|(亿|千万|百万|万|千|百|)元|(亿|千万|百万|万|千|百|)块|角|毛|分)'
|
46 |
+
COM_QUANTIFIERS = '(匹|张|座|回|场|尾|条|个|首|阙|阵|网|炮|顶|丘|棵|只|支|袭|辆|挑|担|颗|壳|窠|曲|墙|群|腔|' \
|
47 |
+
'砣|座|客|贯|扎|捆|刀|令|打|手|罗|坡|山|岭|江|溪|钟|队|单|双|对|出|口|头|脚|板|跳|枝|件|贴|' \
|
48 |
+
'针|线|管|名|位|身|堂|课|本|页|家|户|层|丝|毫|厘|分|钱|两|斤|担|铢|石|钧|锱|忽|(千|毫|微)克|' \
|
49 |
+
'毫|厘|分|寸|尺|丈|里|寻|常|铺|程|(千|分|厘|毫|微)米|撮|勺|合|升|斗|石|盘|碗|碟|叠|桶|笼|盆|' \
|
50 |
+
'盒|杯|钟|斛|锅|簋|篮|盘|桶|罐|瓶|壶|卮|盏|箩|箱|煲|啖|袋|钵|年|月|日|季|刻|时|周|天|秒|分|旬|' \
|
51 |
+
'纪|岁|世|更|夜|春|夏|秋|冬|代|伏|辈|丸|泡|粒|颗|幢|堆|条|根|支|道|面|片|张|颗|块)'
|
52 |
+
|
53 |
+
|
54 |
+
# Punctuation information are based on Zhon project (https://github.com/tsroten/zhon.git)
|
55 |
+
CN_PUNCS_STOP = '!?。。'
|
56 |
+
CN_PUNCS_NONSTOP = '"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏·〈〉-'
|
57 |
+
CN_PUNCS = CN_PUNCS_STOP + CN_PUNCS_NONSTOP
|
58 |
+
|
59 |
+
PUNCS = CN_PUNCS + string.punctuation
|
60 |
+
PUNCS_TRANSFORM = str.maketrans(PUNCS, ' ' * len(PUNCS), '') # replace puncs with space
|
61 |
+
|
62 |
+
|
63 |
+
# https://zh.wikipedia.org/wiki/全行和半行
|
64 |
+
QJ2BJ = {
|
65 |
+
' ': ' ',
|
66 |
+
'!': '!',
|
67 |
+
'"': '"',
|
68 |
+
'#': '#',
|
69 |
+
'$': '$',
|
70 |
+
'%': '%',
|
71 |
+
'&': '&',
|
72 |
+
''': "'",
|
73 |
+
'(': '(',
|
74 |
+
')': ')',
|
75 |
+
'*': '*',
|
76 |
+
'+': '+',
|
77 |
+
',': ',',
|
78 |
+
'-': '-',
|
79 |
+
'.': '.',
|
80 |
+
'/': '/',
|
81 |
+
'0': '0',
|
82 |
+
'1': '1',
|
83 |
+
'2': '2',
|
84 |
+
'3': '3',
|
85 |
+
'4': '4',
|
86 |
+
'5': '5',
|
87 |
+
'6': '6',
|
88 |
+
'7': '7',
|
89 |
+
'8': '8',
|
90 |
+
'9': '9',
|
91 |
+
':': ':',
|
92 |
+
';': ';',
|
93 |
+
'<': '<',
|
94 |
+
'=': '=',
|
95 |
+
'>': '>',
|
96 |
+
'?': '?',
|
97 |
+
'@': '@',
|
98 |
+
'A': 'A',
|
99 |
+
'B': 'B',
|
100 |
+
'C': 'C',
|
101 |
+
'D': 'D',
|
102 |
+
'E': 'E',
|
103 |
+
'F': 'F',
|
104 |
+
'G': 'G',
|
105 |
+
'H': 'H',
|
106 |
+
'I': 'I',
|
107 |
+
'J': 'J',
|
108 |
+
'K': 'K',
|
109 |
+
'L': 'L',
|
110 |
+
'M': 'M',
|
111 |
+
'N': 'N',
|
112 |
+
'O': 'O',
|
113 |
+
'P': 'P',
|
114 |
+
'Q': 'Q',
|
115 |
+
'R': 'R',
|
116 |
+
'S': 'S',
|
117 |
+
'T': 'T',
|
118 |
+
'U': 'U',
|
119 |
+
'V': 'V',
|
120 |
+
'W': 'W',
|
121 |
+
'X': 'X',
|
122 |
+
'Y': 'Y',
|
123 |
+
'Z': 'Z',
|
124 |
+
'[': '[',
|
125 |
+
'\': '\\',
|
126 |
+
']': ']',
|
127 |
+
'^': '^',
|
128 |
+
'_': '_',
|
129 |
+
'`': '`',
|
130 |
+
'a': 'a',
|
131 |
+
'b': 'b',
|
132 |
+
'c': 'c',
|
133 |
+
'd': 'd',
|
134 |
+
'e': 'e',
|
135 |
+
'f': 'f',
|
136 |
+
'g': 'g',
|
137 |
+
'h': 'h',
|
138 |
+
'i': 'i',
|
139 |
+
'j': 'j',
|
140 |
+
'k': 'k',
|
141 |
+
'l': 'l',
|
142 |
+
'm': 'm',
|
143 |
+
'n': 'n',
|
144 |
+
'o': 'o',
|
145 |
+
'p': 'p',
|
146 |
+
'q': 'q',
|
147 |
+
'r': 'r',
|
148 |
+
's': 's',
|
149 |
+
't': 't',
|
150 |
+
'u': 'u',
|
151 |
+
'v': 'v',
|
152 |
+
'w': 'w',
|
153 |
+
'x': 'x',
|
154 |
+
'y': 'y',
|
155 |
+
'z': 'z',
|
156 |
+
'{': '{',
|
157 |
+
'|': '|',
|
158 |
+
'}': '}',
|
159 |
+
'~': '~',
|
160 |
+
}
|
161 |
+
QJ2BJ_TRANSFORM = str.maketrans(''.join(QJ2BJ.keys()), ''.join(QJ2BJ.values()), '')
|
162 |
+
|
163 |
+
|
164 |
+
# 2013 China National Standard: https://zh.wikipedia.org/wiki/通用规范汉字表, raw resources:
|
165 |
+
# https://github.com/mozillazg/pinyin-data/blob/master/kMandarin_8105.txt with 8105 chinese chars in total
|
166 |
+
CN_CHARS_COMMON = (
|
167 |
+
'一丁七万丈三上下不与丏丐丑专且丕世丘丙业丛东丝丞丢两严丧个丫中丰串临丸丹为主丽举'
|
168 |
+
'乂乃久么义之乌乍乎乏乐乒乓乔乖乘乙乜九乞也习乡书乩买乱乳乸乾了予争事二亍于亏云互'
|
169 |
+
'亓五井亘亚些亟亡亢交亥亦产亨亩享京亭亮亲亳亵亶亸亹人亿什仁仂仃仄仅仆仇仉今介仍从'
|
170 |
+
'仑仓仔仕他仗付仙仝仞仟仡代令以仨仪仫们仰仲仳仵件价任份仿企伈伉伊伋伍伎伏伐休众优'
|
171 |
+
'伙会伛伞伟传伢伣伤伥伦伧伪伫伭伯估伲伴伶伸伺似伽伾佁佃但位低住佐佑体何佖佗佘余佚'
|
172 |
+
'佛作佝佞佟你佣佤佥佩佬佯佰佳佴佶佸佺佻佼佽佾使侁侂侃侄侈侉例侍侏侑侔侗侘供依侠侣'
|
173 |
+
'侥侦侧侨侩侪侬侮侯侴侵侹便促俄俅俊俍俎俏俐俑俗俘俙俚俜保俞俟信俣俦俨俩俪俫俭修俯'
|
174 |
+
'俱俳俵俶俸俺俾倌倍倏倒倓倔倕倘候倚倜倞借倡倥倦倧倨倩倪倬倭倮倴债倻值倾偁偃假偈偌'
|
175 |
+
'偎偏偓偕做停偡健偬偭偰偲偶偷偻偾偿傀傃傅傈傉傍傒傕傣傥傧储傩催傲傺傻僇僎像僔僖僚'
|
176 |
+
'僦僧僬僭僮僰僳僵僻儆儇儋儒儡儦儳儴儿兀允元兄充兆先光克免兑兔兕兖党兜兢入全八公六'
|
177 |
+
'兮兰共关兴兵其具典兹养兼兽冀冁内冈冉册再冏冒冔冕冗写军农冠冢冤冥冬冮冯冰冱冲决况'
|
178 |
+
'冶冷冻冼冽净凄准凇凉凋凌减凑凓凘凛凝几凡凤凫凭凯凰凳凶凸凹出击凼函凿刀刁刃分切刈'
|
179 |
+
'刊刍刎刑划刖列刘则刚创初删判刨利别刬刭刮到刳制刷券刹刺刻刽刿剀剁剂剃剅削剋剌前剐'
|
180 |
+
'剑剔剕剖剜剞剟剡剥剧剩剪副割剽剿劁劂劄劈劐劓力劝办功加务劢劣动助努劫劬劭励劲劳劼'
|
181 |
+
'劾势勃勇勉勋勍勐勒勔勖勘勚募勠勤勰勺勾勿匀包匆匈匍匏匐匕化北匙匜匝匠匡匣匦匪匮匹'
|
182 |
+
'区医匼匾匿十千卅升午卉半华协卑卒卓单卖南博卜卞卟占卡卢卣卤卦卧卫卬卮卯印危即却卵'
|
183 |
+
'卷卸卺卿厂厄厅历厉压厌厍厕厖厘厚厝原厢厣厥厦厨厩厮去厾县叁参叆叇又叉及友双反发叔'
|
184 |
+
'叕取受变叙叚叛叟叠口古句另叨叩只叫召叭叮可台叱史右叵叶号司叹叻叼叽吁吃各吆合吉吊'
|
185 |
+
'同名后吏吐向吒吓吕吖吗君吝吞吟吠吡吣否吧吨吩含听吭吮启吱吲吴吵吸吹吻吼吽吾呀呃呆'
|
186 |
+
'呇呈告呋呐呒呓呔呕呖呗员呙呛呜呢呣呤呦周呱呲味呵呶呷呸呻呼命咀咂咄咆咇咉咋和咍咎'
|
187 |
+
'咏咐咒咔咕咖咙咚咛咝咡咣咤咥咦咧咨咩咪咫咬咯咱咳咴咸咺咻咽咿哀品哂哃哄哆哇哈哉哌'
|
188 |
+
'响哎哏哐哑哒哓哔哕哗哙哚哝哞哟哢哥哦哧哨哩哪哭哮哱哲哳哺哼哽哿唁唆唇唉唏唐唑唔唛'
|
189 |
+
'唝唠唢唣唤唧唪唬售唯唰唱唳唵唷唼唾唿啁啃啄商啉啊啐啕啖啜啡啤啥啦啧啪啫啬啭啮啰啴'
|
190 |
+
'啵啶啷啸啻啼啾喀喁喂喃善喆喇喈喉喊喋喏喑喔喘喙喜喝喟喤喧喱喳喵喷喹喻喽喾嗄嗅嗉嗌'
|
191 |
+
'嗍嗐嗑嗒嗓嗔嗖嗜嗝嗞嗟嗡嗣嗤嗥嗦嗨嗪嗫嗬嗯嗲嗳嗵嗷嗽嗾嘀嘁嘈嘉嘌嘎嘏嘘嘚嘛嘞嘟嘡'
|
192 |
+
'嘣嘤嘧嘬嘭嘱嘲嘴嘶嘹嘻嘿噀噂噇噌噍噎噔噗噘噙噜噢噤器噩噪噫噬噱噶噻噼嚄嚅嚆嚎嚏嚓'
|
193 |
+
'嚚嚣嚭嚯嚷嚼囊囔囚四回囟因囡团囤囫园困囱围囵囷囹固国图囿圃圄圆圈圉圊圌圐圙圜土圢'
|
194 |
+
'圣在圩圪圫圬圭圮圯地圲圳圹场圻圾址坂均坉坊坋坌坍坎坏坐坑坒块坚坛坜坝坞坟坠坡坤坥'
|
195 |
+
'坦坨坩坪坫坬坭坯坰坳坷坻坼坽垂垃垄垆垈型垌垍垎垏垒垓垕垙垚垛垞垟垠垡垢垣垤垦垧垩'
|
196 |
+
'垫垭垮垯垱垲垴垵垸垺垾垿埂埃埆埇埋埌城埏埒埔埕埗埘埙埚埝域埠埤埪埫埭埯埴埵埸培基'
|
197 |
+
'埼埽堂堃堆堇堉堋堌堍堎堐堑堕堙堞堠堡堤堧堨堪堰堲堵堼堽堾塄塅塆塌塍塑塔塘塝塞塥填'
|
198 |
+
'塬塱塾墀墁境墅墈墉墐墒墓墕墘墙墚增墟墡墣墦墨墩墼壁壅壑壕壤士壬壮声壳壶壸壹处备复'
|
199 |
+
'夏夐夔夕外夙多夜够夤夥大天太夫夬夭央夯失头夷夸夹夺夼奁奂奄奇奈奉奋奎奏契奓奔奕奖'
|
200 |
+
'套奘奚奠奡奢奥奭女奴奶奸她好妁如妃妄妆妇妈妊妍妒妓妖妗妘妙妞妣妤妥妧妨妩妪妫妭妮'
|
201 |
+
'妯妲妹妻妾姆姈姊始姐姑姒姓委姗姘姚姜姝姞姣姤姥姨姬姮姱姶姹姻姽姿娀威娃娄娅娆娇娈'
|
202 |
+
'娉娌娑娓娘娜娟娠娣娥娩娱娲娴娵娶娼婀婆婉婊婌婍婕婘婚婞婠婢婤婧婪婫婳婴婵婶婷婺婻'
|
203 |
+
'婼婿媂媄媆媒媓媖��媛媞媪媭媱媲媳媵媸媾嫁嫂嫄嫉嫌嫒嫔嫕嫖嫘嫚嫜嫠嫡嫣嫦嫩嫪嫫嫭嫱'
|
204 |
+
'嫽嬉嬖嬗嬛嬥嬬嬴嬷嬿孀孅子孑孓孔孕孖字存孙孚孛孜孝孟孢季孤孥学孩孪孬孰孱孳孵孺孽'
|
205 |
+
'宁它宄宅宇守安宋完宏宓宕宗官宙定宛宜宝实宠审客宣室宥宦宧宪宫宬宰害宴宵家宸容宽宾'
|
206 |
+
'宿寁寂寄寅密寇富寐寒寓寝寞察寡寤寥寨寮寰寸对寺寻导寿封射将尉尊小少尔尕尖尘尚尜尝'
|
207 |
+
'尢尤尥尧尨尪尬就尴尸尹尺尻尼尽尾尿局屁层屃居屈屉届屋屎屏屐屑展屙属屠屡屣履屦屯山'
|
208 |
+
'屹屺屼屾屿岁岂岈岊岌岍岐岑岔岖岗岘岙岚岛岜岞岠岢岣岨岩岫岬岭岱岳岵岷岸岽岿峁峂峃'
|
209 |
+
'峄峋峒峗峘峙峛峡峣峤峥峦峧峨峪峭峰峱峻峿崀崁崂崃崄崆崇崌崎崒崔崖崚崛崞崟崡崤崦崧'
|
210 |
+
'崩崭崮崴崶崽崾崿嵁嵅嵇嵊嵋嵌嵎嵖嵘嵚嵛嵝嵩嵫嵬嵯嵲嵴嶂嶅嶍嶒嶓嶙嶝嶟嶦嶲嶷巅巇巉'
|
211 |
+
'巍川州巡巢工左巧巨巩巫差巯己已巳巴巷巽巾币市布帅帆师希帏帐帑帔帕帖帘帙帚帛帜帝帡'
|
212 |
+
'带帧帨席帮帱帷常帻帼帽幂幄幅幌幔幕幖幛幞幡幢幪干平年并幸幺幻幼幽广庄庆庇床庋序庐'
|
213 |
+
'庑库应底庖店庙庚府庞废庠庤庥度座庭庱庳庵庶康庸庹庼庾廆廉廊廋廑廒廓廖廙廛廨廪延廷'
|
214 |
+
'建廿开弁异弃弄弆弇弈弊弋式弑弓引弗弘弛弟张弢弥弦弧弨弩弭弯弱弶弸弹强弼彀归当录彖'
|
215 |
+
'彗彘彝彟形彤彦彧彩彪彬彭彰影彳彷役彻彼往征徂径待徇很徉徊律徐徒徕得徘徙徛徜御徨循'
|
216 |
+
'徭微徵德徼徽心必忆忉忌忍忏忐忑忒忖志忘忙忝忞忠忡忤忧忪快忭忮忱忳念忸忺忻忽忾忿怀'
|
217 |
+
'态怂怃怄怅怆怊怍怎怏怒怔怕怖怙怛怜思怠怡急怦性怨怩怪怫怯怵总怼怿恁恂恃恋恍恐恒恓'
|
218 |
+
'恔恕恙恚恝恢恣恤恧恨恩恪恫恬恭息恰恳恶恸恹恺恻恼恽恿悃悄悆悈悉悌悍悒悔悖悚悛悝悟'
|
219 |
+
'悠悢患悦您悫悬悭悯悰悱悲悴悸悻悼情惆惇惊惋惎惑惔惕惘惙惚惛惜惝惟惠惦惧惨惩惫惬惭'
|
220 |
+
'惮惯惰想惴惶惹惺愀愁愃愆愈愉愍愎意愐愔愕愚感愠愣愤愦愧愫愭愿慆慈慊慌慎慑慕慝慢慥'
|
221 |
+
'慧慨慬慭慰慵慷憋憎憔憕憙憧憨憩憬憭憷憺憾懂懈懊懋懑懒懔懦懵懿戆戈戊戋戌戍戎戏成我'
|
222 |
+
'戒戕或戗战戚戛戟戡戢戣戤戥截戬戭戮戳戴户戽戾房所扁扂扃扅扆扇扈扉扊手才扎扑扒打扔'
|
223 |
+
'托扛扞扣扦执扩扪扫扬扭扮扯扰扳扶批扺扼扽找承技抃抄抉把抑抒抓抔投抖抗折抚抛抟抠抡'
|
224 |
+
'抢护报抨披抬抱抵抹抻押抽抿拂拃拄担拆拇拈拉拊拌拍拎拐拒拓拔拖拗拘拙招拜拟拢拣拤拥'
|
225 |
+
'拦拧拨择括拭拮拯拱拳拴拶拷拼拽拾拿持挂指挈按挎挑挓挖挚挛挝挞挟挠挡挣挤挥挦挨挪挫'
|
226 |
+
'振挲挹挺挽捂捃捅捆捉捋捌捍捎捏捐捕捞损捡换捣捧捩捭据捯捶捷捺捻捽掀掂掇授掉掊掌掎'
|
227 |
+
'掏掐排掖掘掞掠探掣接控推掩措掬掭掮掰掳掴掷掸掺掼掾揄揆揉揍描提插揕揖揠握揣揩揪揭'
|
228 |
+
'揳援揶揸揽揿搀搁搂搅搋搌搏搐搒搓搔搛搜搞搠搡搦搪搬搭搴携搽摁摄摅摆摇摈摊摏摒摔摘'
|
229 |
+
'摛摞摧摩摭摴摸摹摽撂撄撅撇撑撒撕撖撙撞撤撩撬播撮撰撵撷撸撺撼擀擂擅操擎擐擒擘擞擢'
|
230 |
+
'擤擦擿攀攉攒攘攥攫攮支收攸改攻攽放政故效敉敌敏救敔敕敖教敛敝敞敢散敦敩敫敬数敲整'
|
231 |
+
'敷文斋斌斐斑斓斗料斛斜斝斟斠斡斤斥斧斩斫断斯新斶方於施旁旃旄旅旆旋旌旎族旐旒旖旗'
|
232 |
+
'旞无既日旦旧旨早旬旭旮旯旰旱旴旵时旷旸旺旻旿昀昂昃昄昆昇昈昉昊昌明昏昒易昔昕昙昝'
|
233 |
+
'星映昡昣昤春昧昨昪昫昭是昱昳昴昵昶昺昼昽显晁晃晅晊晋晌晏晐晒晓晔晕晖晗晙晚晞晟晡'
|
234 |
+
'晢晤晦晨晪晫普景晰晱晴晶晷智晾暂暄暅暇暌暑暕暖暗暝暧暨暮暲暴暵暶暹暾暿曈曌曙曛曜'
|
235 |
+
'曝曦曩曰曲曳更曷曹曼曾替最月有朋服朏朐朓朔朕朗望朝期朦木未末本札术朱朳朴朵朸机朽'
|
236 |
+
'杀杂权杄杆杈杉杌李杏材村杓杕杖杙杜杞束杠条来杧杨杩杪杭杯杰杲杳杵杷杻杼松板极构枅'
|
237 |
+
'枇枉枋枍析枕林枘枚果枝枞枢枣枥枧枨枪枫枭枯枰枲枳枵架枷枸枹柁柃柄柈柊柏某柑柒染柔'
|
238 |
+
'柖柘柙柚柜柝柞柠柢查柩柬柯柰柱柳柴柷柽柿栀栅标栈栉栊栋栌栎栏栐树栒栓栖栗栝栟校栩'
|
239 |
+
'株栲栳栴样核根栻格栽栾桀桁桂桃桄桅框案桉桊桌桎桐桑桓桔桕桠桡桢档桤桥桦桧桨桩桫桯'
|
240 |
+
'桲桴桶桷桹梁梃梅梆梌梏梓梗梠梢梣梦梧梨梭梯械梳梴梵梼梽梾梿检棁棂棉棋棍棐棒棓棕棘'
|
241 |
+
'棚棠棣棤棨棪棫棬森棰棱棵棹棺棻棼棽椀椁椅椆椋植椎椐椑椒椓椟椠椤椪椭椰椴椸椹椽椿楂'
|
242 |
+
'楒楔楗楙楚楝楞楠楣楦楩楪楫楮楯楷楸楹楼概榃榄榅榆榇榈榉榍榑榔榕榖榛榜榧榨榫榭榰榱'
|
243 |
+
'榴榷榻槁槃槊槌槎��槔槚槛槜槟槠槭槱槲槽槿樊樗樘樟模樨横樯樱樵樽樾橄橇橐橑橘橙橛橞'
|
244 |
+
'橡橥橦橱橹橼檀檄檎檐檑檗檞檠檩檫檬櫆欂欠次欢欣欤欧欲欸欹欺欻款歃歅歆歇歉歌歙止正'
|
245 |
+
'此步武歧歪歹死歼殁殂殃殄殆殇殉殊残殍殒殓殖殚殛殡殣殪殳殴段殷殿毁毂毅毋毌母每毐毒'
|
246 |
+
'毓比毕毖毗毙毛毡毪毫毯毳毵毹毽氅氆氇氍氏氐民氓气氕氖氘氙氚氛氟氡氢氤氦氧氨氩氪氮'
|
247 |
+
'氯氰氲水永氾氿汀汁求汆汇汈汉汊汋汐汔汕汗汛汜汝汞江池污汤汧汨汩汪汫汭汰汲汴汶汹汽'
|
248 |
+
'汾沁沂沃沄沅沆沇沈沉沌沏沐沓沔沘沙沚沛沟没沣沤沥沦沧沨沩沪沫沭沮沱河沸油沺治沼沽'
|
249 |
+
'沾沿泂泃泄泅泇泉泊泌泐泓泔法泖泗泙泚泛泜泞泠泡波泣泥注泪泫泮泯泰泱泳泵泷泸泺泻泼'
|
250 |
+
'泽泾洁洄洇洈洋洌洎洑洒洓洗洘洙洚洛洞洢洣津洧洨洪洫洭洮洱洲洳洴洵洸洹洺活洼洽派洿'
|
251 |
+
'流浃浅浆浇浈浉浊测浍济浏浐浑浒浓浔浕浙浚浛浜浞浟浠浡浣浥浦浩浪浬浭浮浯浰浲浴海浸'
|
252 |
+
'浼涂涄涅消涉涌涍涎涐涑涓涔涕涘涛涝涞涟涠涡涢涣涤润涧涨涩涪涫涮涯液涴涵涸涿淀淄淅'
|
253 |
+
'淆淇淋淌淏淑淖淘淙淜淝淞淟淠淡淤淦淫淬淮淯深淳淴混淹添淼清渊渌渍渎渐渑渔渗渚渝渟'
|
254 |
+
'渠渡渣渤渥温渫渭港渰渲渴游渺渼湃湄湉湍湎湑湓湔湖湘湛湜湝湟湣湫湮湲湴湾湿溁溃溅溆'
|
255 |
+
'溇溉溍溏源溘溚溜溞溟溠溢溥溦溧溪溯溱溲溴溵溶溷溹溺溻溽滁滂滃滆滇滉滋滍滏滑滓滔滕'
|
256 |
+
'滗滘滚滞滟滠满滢滤滥滦滧滨滩滪滫滴滹漂漆漈漉漋漏漓演漕漖漠漤漦漩漪漫漭漯漱漳漴漶'
|
257 |
+
'漷漹漻漼漾潆潇潋潍潏潖潘潜潞潟潢潦潩潭潮潲潴潵潸潺潼潽潾澂澄澈澉澌澍澎澛澜澡澥澧'
|
258 |
+
'澪澭澳澴澶澹澼澽激濂濉濋濑濒濞濠濡濩濮濯瀌瀍瀑瀔瀚瀛瀣瀱瀵瀹瀼灈灌灏灞火灭灯灰灵'
|
259 |
+
'灶灸灼灾灿炀炅炆炉炊炌炎炒炔炕炖炘炙炜炝炟炣炫炬炭炮炯炱炳炷炸点炻炼炽烀烁烂烃烈'
|
260 |
+
'烊烔烘烙烛烜烝烟烠烤烦烧烨烩烫烬热烯烶烷烹烺烻烽焆焉焊焌焐焓焕焖焗焘焙焚焜焞焦焯'
|
261 |
+
'焰焱然煁煃煅煊煋煌煎煓煜煞煟煤煦照煨煮煲煳煴煸煺煽熄熇熊熏熔熘熙熛熜熟熠熥熨熬熵'
|
262 |
+
'熹熻燃燊燋燎燏燔燕燚燠燥燧燮燹爆爇爔爚爝爟爨爪爬爰爱爵父爷爸爹爻爽爿牁牂片版牌牍'
|
263 |
+
'牒牖牙牚牛牝牟牡牢牤牥牦牧物牮牯牲牵特牺牻牾牿犀犁犄犇犊犋犍犏犒犟犨犬犯犰犴状犷'
|
264 |
+
'犸犹狁狂狃狄狈狉狍狎狐狒狗狙狝狞狠狡狨狩独狭狮狯狰狱狲狳狴狷狸狺狻狼猁猃猄猇猊猎'
|
265 |
+
'猕猖猗猛猜猝猞猡猢猥猩猪猫猬献猯猰猱猴猷猹猺猾猿獍獐獒獗獠獬獭獯獴獾玃玄率玉王玎'
|
266 |
+
'玑玒玓玕玖玘玙玚玛玞玟玠玡玢玤玥玦玩玫玭玮环现玱玲玳玶玷玹玺玻玼玿珀珂珅珇珈珉珊'
|
267 |
+
'珋珌珍珏珐珑珒珕珖珙珛珝珞珠珢珣珥珦珧珩珪珫班珰珲珵珷珸珹珺珽琀球琄琅理琇琈琉琊'
|
268 |
+
'琎琏琐琔琚琛琟琡琢琤琥琦琨琪琫琬琭琮琯琰琲琳琴琵琶琼瑀瑁瑂瑃瑄瑅瑆瑑瑓瑔瑕瑖瑗瑙'
|
269 |
+
'瑚瑛瑜瑝瑞瑟瑢瑧瑨瑬瑭瑰瑱瑳瑶瑷瑾璀璁璃璆璇璈璋璎璐璒璘璜璞璟璠璥璧璨璩璪璬璮璱'
|
270 |
+
'璲璺瓀瓒瓖瓘瓜瓞瓠瓢瓣瓤瓦瓮瓯瓴瓶瓷瓻瓿甄甍甏甑甓甗甘甚甜生甡甥甦用甩甪甫甬甭甯'
|
271 |
+
'田由甲申电男甸町画甾畀畅畈畋界畎畏畔畖留畚畛畜畤略畦番畬畯畲畴畸畹畿疁疃疆疍疏疐'
|
272 |
+
'疑疔疖疗疙疚疝疟疠疡疢疣疤疥疫疬疭疮疯疰疱疲疳疴疵疸疹疼疽疾痂痃痄病症痈痉痊痍痒'
|
273 |
+
'痓痔痕痘痛痞痢痣痤痦痧痨痪痫痰痱痴痹痼痿瘀瘁瘃瘅瘆瘊瘌瘐瘕瘗瘘瘙瘛瘟瘠瘢瘤瘥瘦瘩'
|
274 |
+
'瘪瘫瘭瘰瘳瘴瘵瘸瘼瘾瘿癀癃癌癍癔癖癗癜癞癣癫癯癸登白百癿皂的皆皇皈皋皎皑皓皕皖皙'
|
275 |
+
'皛皞皤皦皭皮皱皲皴皿盂盅盆盈盉益盍盎盏盐监盒盔盖盗盘盛盟盥盦目盯盱盲直盷相盹盼盾'
|
276 |
+
'省眄眇眈眉眊看眍眙眚真眠眢眦眨眩眬眭眯眵眶眷眸眺眼着睁睃睄睇睎睐睑睚睛睡睢督睥睦'
|
277 |
+
'睨睫睬睹睽睾睿瞀瞄瞅瞋瞌瞍瞎瞑瞒瞟瞠瞢瞥瞧瞩瞪瞫瞬瞭瞰瞳瞵瞻瞽瞿矍矗矛矜矞矢矣知'
|
278 |
+
'矧矩矫矬短矮矰石矶矸矻矼矾矿砀码砂砄砆砉砌砍砑砒研砖砗砘砚砜砝砟砠砣砥砧砫砬砭砮'
|
279 |
+
'砰破砵砷砸砹砺砻砼砾础硁硅硇硊硌硍硎硐硒硔硕硖硗硙硚硝硪硫硬硭确硼硿碃碇碈碉碌碍'
|
280 |
+
'碎碏碑碓碗碘碚碛碜碟碡碣碥碧碨碰碱碲碳碴碶碹碾磁磅磉磊磋磏磐磔磕磙磜磡磨磬磲磴磷'
|
281 |
+
'磹磻礁礅礌礓礞礴礵示礼社祀祁祃祆祇祈祉祊祋祎祏祐祓祕祖祗祚祛祜祝神祟祠祢祥祧票祭'
|
282 |
+
'祯祲祷祸祺祼祾禀禁禄禅禊禋福禒禔禘禚禛禤禧禳禹禺离禽禾秀私秃秆秉秋种科秒秕秘租秣'
|
283 |
+
'秤秦秧秩秫秬秭积��秸移秽秾稀稂稃稆程稌稍税稑稔稗稙稚稞稠稣稳稷稹稻稼稽稿穄穆穑穗'
|
284 |
+
'穙穜穟穰穴究穷穸穹空穿窀突窃窄窅窈窊窍窎窑窒窕窖窗窘窜窝窟窠窣窥窦窨窬窭窳窸窿立'
|
285 |
+
'竑竖竘站竞竟章竣童竦竫竭端竹竺竽竿笃笄笆笈笊笋笏笑笔笕笙笛笞笠笤笥符笨笪笫第笮笯'
|
286 |
+
'笱笳笸笺笼笾筀筅筇等筋筌筏筐筑筒答策筘筚筛筜筝筠筢筤筥筦筮筱筲筵筶筷筹筻筼签简箅'
|
287 |
+
'箍箐箓箔箕箖算箜管箢箦箧箨箩箪箫箬箭箱箴箸篁篆篇篌篑篓篙篚篝篡篥篦篪篮篯篱篷篼篾'
|
288 |
+
'簃簇簉簋簌簏簕簖簝簟簠簧簪簰簸簿籀籁籍籥米籴类籼籽粉粑粒粕粗粘粜粝粞粟粢粤粥粪粮'
|
289 |
+
'粱粲粳粹粼粽精粿糁糅糇糈糊糌糍糒糕糖糗糙糜糟糠糨糯糵系紊素索紧紫累絜絮絷綦綮縠縢'
|
290 |
+
'縻繁繄繇纂纛纠纡红纣纤纥约级纨纩纪纫纬纭纮纯纰纱纲纳纴纵纶纷纸纹纺纻纼纽纾线绀绁'
|
291 |
+
'绂练组绅细织终绉绊绋绌绍绎经绐绑绒结绔绕绖绗绘给绚绛络绝绞统绠绡绢绣绤绥绦继绨绩'
|
292 |
+
'绪绫续绮绯绰绱绲绳维绵绶绷绸绹绺绻综绽绾绿缀缁缂缃缄缅缆缇缈缉缊缌缎缐缑缒缓缔缕'
|
293 |
+
'编缗缘缙缚缛缜缝缞缟缠缡缢缣缤缥缦缧缨缩缪缫缬缭缮缯缰缱缲缳缴缵缶缸缺罂罄罅罍罐'
|
294 |
+
'网罔罕罗罘罚罟罡罢罨罩罪置罱署罴罶罹罽罾羁羊羌美羑羓羔羕羖羚羝羞羟羡群羧羯羰羱羲'
|
295 |
+
'羸羹羼羽羿翀翁翂翃翅翈翊翌翎翔翕翘翙翚翛翟翠翡翥翦翩翮翯翰翱翳翷翻翼翾耀老考耄者'
|
296 |
+
'耆耇耋而耍耏耐耑耒耔耕耖耗耘耙耜耠耢耤耥耦耧耨耩耪耰耱耳耵耶耷耸耻耽耿聂聃聆聊聋'
|
297 |
+
'职聍聒联聘聚聩聪聱聿肃肄肆肇肉肋肌肓肖肘肚肛肝肟肠股肢肤肥肩肪肫肭肮肯肱育肴肷肸'
|
298 |
+
'肺肼肽肾肿胀胁胂胃胄胆胈背胍胎胖胗胙胚胛胜胝胞胠胡胣胤胥胧胨胩胪胫胬胭胯胰胱胲胳'
|
299 |
+
'胴胶胸胺胼能脂脆脉脊脍脎脏脐脑脒脓脔脖脘脚脞脟脩脬脯脱脲脶脸脾脿腆腈腊腋腌腐腑腒'
|
300 |
+
'腓腔腕腘腙腚腠腥腧腨腩腭腮腯腰腱腴腹腺腻腼腽腾腿膀膂膈膊膏膑膘膙膛膜膝膦膨膳膺膻'
|
301 |
+
'臀臂臃臆臊臌臑臜臣臧自臬臭至致臻臼臾舀舁舂舄舅舆舌舍舐舒舔舛舜舞舟舠舢舣舥航舫般'
|
302 |
+
'舭舯舰舱舲舳舴舵舶舷舸船舻舾艄艅艇艉艋艎艏艘艚艟艨艮良艰色艳艴艺艽艾艿节芃芄芈芊'
|
303 |
+
'芋芍芎芏芑芒芗芘芙芜芝芟芠芡芣芤芥芦芨芩芪芫芬芭芮芯芰花芳芴芷芸芹芼芽芾苁苄苇苈'
|
304 |
+
'苉苊苋苌苍苎苏苑苒苓苔苕苗苘苛苜苞苟苠苡苣苤若苦苧苫苯英苴苷苹苻苾茀茁茂范茄茅茆'
|
305 |
+
'茈茉茋茌茎茏茑茓茔茕茗茚茛茜茝茧茨茫茬茭茯茱茳茴茵茶茸茹茺茼茽荀荁荃荄荆荇草荏荐'
|
306 |
+
'荑荒荓荔荖荙荚荛荜荞荟荠荡荣荤荥荦荧荨荩荪荫荬荭荮药荷荸荻荼荽莅莆莉莎莒莓莘莙莛'
|
307 |
+
'莜莝莞莠莨莩莪莫莰莱莲莳莴莶获莸莹莺莼莽莿菀菁菂菅菇菉菊菌菍菏菔菖菘菜菝菟菠菡菥'
|
308 |
+
'菩菪菰菱菲菹菼菽萁萃萄萆萋萌萍萎萏萑萘萚萜萝萣萤营萦萧萨萩萱萳萸萹萼落葆葎葑葖著'
|
309 |
+
'葙葚葛葜葡董葩葫葬葭葰葱葳葴葵葶葸葺蒂蒄蒇蒈蒉蒋蒌蒎蒐蒗蒙蒜蒟蒡蒨蒯蒱蒲蒴蒸蒹蒺'
|
310 |
+
'蒻蒽蒿蓁蓂蓄蓇蓉蓊蓍蓏蓐蓑蓓蓖蓝蓟蓠蓢蓣蓥蓦蓬蓰蓼蓿蔀蔃蔈蔊蔌蔑蔓蔗蔚蔟蔡蔫蔬蔷'
|
311 |
+
'蔸蔹蔺蔻蔼蔽蕃蕈蕉蕊蕖蕗蕙蕞蕤蕨蕰蕲蕴蕹蕺蕻蕾薁薄薅薇薏薛薜薢薤薨薪薮薯薰薳薷薸'
|
312 |
+
'薹薿藁藉藏藐藓藕藜藟藠藤藦藨藩藻藿蘅蘑蘖蘘蘧蘩蘸蘼虎虏虐虑虒虓虔虚虞虢虤虫虬虮虱'
|
313 |
+
'虷虸虹虺虻虼虽虾虿蚀蚁蚂蚄蚆蚊蚋蚌蚍蚓蚕蚜蚝蚣蚤蚧蚨蚩蚪蚬蚯蚰蚱蚲蚴蚶蚺蛀蛃蛄蛆'
|
314 |
+
'蛇蛉蛊蛋蛎蛏蛐蛑蛔蛘蛙蛛蛞蛟蛤蛩蛭蛮蛰蛱蛲蛳蛴蛸蛹蛾蜀蜂蜃蜇蜈蜉蜊蜍蜎蜐蜒蜓蜕蜗'
|
315 |
+
'蜘蜚蜜蜞蜡蜢蜣蜥蜩蜮蜱蜴蜷蜻蜾蜿蝇蝈蝉蝌蝎蝓蝗蝘蝙蝠蝣蝤蝥蝮蝰蝲蝴蝶蝻蝼蝽蝾螂螃'
|
316 |
+
'螅螈螋融螗螟螠螣螨螫螬螭螯螱螳螵螺螽蟀蟆蟊蟋蟏蟑蟒蟛蟠蟥蟪蟫蟮蟹蟾蠃蠊蠋蠓蠕蠖蠡'
|
317 |
+
'蠢蠲蠹蠼血衃衄衅行衍衎衒衔街衙衠衡衢衣补表衩衫衬衮衰衲衷衽衾衿袁袂袄袅袆袈袋袍袒'
|
318 |
+
'袖袗袜袢袤袪被袭袯袱袷袼裁裂装裆裈裉裎裒裔裕裘裙裛裟裢裣裤裥裨裰裱裳裴裸裹裼裾褂'
|
319 |
+
'褊褐褒褓褕褙褚褛褟褡褥褪褫褯褰褴褶襁襄襕襚襜襞襟襦襫襻西要覃覆见观觃规觅视觇览觉'
|
320 |
+
'觊觋觌觎觏觐觑角觖觚觜觞觟解觥触觫觭觯觱觳觿言訄訇訚訾詈詟詹誉誊誓謇警譬计订讣认'
|
321 |
+
'讥讦讧讨让讪讫训议讯记讱讲讳讴讵讶讷许讹论讻讼讽设访诀证诂诃评诅识诇诈诉诊诋诌词'
|
322 |
+
'诎诏诐译诒诓诔试诖诗诘诙诚诛诜话诞诟诠诡询诣诤该详诧诨诩诫诬语诮误诰诱诲诳说诵请'
|
323 |
+
'诸诹诺读诼诽课诿��谁谂调谄谅谆谇谈谊谋谌谍谎谏谐谑谒谓谔谕谖谗谙谚谛谜谝谞谟谠谡'
|
324 |
+
'谢谣谤谥谦谧谨谩谪谫谬谭谮谯谰谱谲谳谴谵谶谷谼谿豁豆豇豉豌豕豚象豢豨豪豫豮豳豸豹'
|
325 |
+
'豺貂貅貆貉貊貌貔貘贝贞负贡财责贤败账货质贩贪贫贬购贮贯贰贱贲贳贴贵贶贷贸费贺贻贼'
|
326 |
+
'贽贾贿赀赁赂赃资赅赆赇赈赉赊赋赌赍赎赏赐赑赒赓赔赕赖赗赘赙赚赛赜赝赞赟赠赡赢赣赤'
|
327 |
+
'赦赧赪赫赭走赳赴赵赶起趁趄超越趋趑趔趟趣趯趱足趴趵趸趺趼趾趿跂跃跄跆跋跌跎跏跐跑'
|
328 |
+
'跖跗跚跛距跞跟跣跤跨跪跬路跱跳践跶跷跸跹跺跻跽踅踉踊踌踏踒踔踝踞踟踢踣踦踩踪踬踮'
|
329 |
+
'踯踱踵踶踹踺踽蹀蹁蹂蹄蹅蹇蹈蹉蹊蹋蹐蹑蹒蹙蹚蹜蹢蹦蹩蹬蹭蹯蹰蹲蹴蹶蹼蹽蹾蹿躁躅躇'
|
330 |
+
'躏躐躔躜躞身躬躯躲躺车轧轨轩轪轫转轭轮软轰轱轲轳轴轵轶轷轸轹轺轻轼载轾轿辀辁辂较'
|
331 |
+
'辄辅辆辇辈辉辊辋辌辍辎辏辐辑辒输辔辕辖辗辘辙辚辛辜辞辟辣辨辩辫辰辱边辽达辿迁迂迄'
|
332 |
+
'迅过迈迎运近迓返迕还这进远违连迟迢迤迥迦迨迩迪迫迭迮述迳迷迸迹迺追退送适逃逄逅逆'
|
333 |
+
'选逊逋逍透逐逑递途逖逗通逛逝逞速造逡逢逦逭逮逯逴逵逶逸逻逼逾遁遂遄遆遇遍遏遐遑遒'
|
334 |
+
'道遗遘遛遢遣遥遨遭遮遴遵遹遽避邀邂邃邈邋邑邓邕邗邘邙邛邝邠邡邢那邦邨邪邬邮邯邰邱'
|
335 |
+
'邲邳邴邵邶邸邹邺邻邽邾邿郁郃郄郅郇郈郊郎郏郐郑郓郗郚郛郜郝郡郢郤郦郧部郪郫郭郯郴'
|
336 |
+
'郸都郾郿鄀鄂鄃鄄鄅鄌鄑鄗鄘鄙鄚鄜鄞鄠鄢鄣鄫鄯鄱鄹酂酃酅酆酉酊酋酌配酎酏酐酒酗酚酝'
|
337 |
+
'酞酡酢酣酤酥酦酩酪酬酮酯酰酱酲酴酵酶酷酸酹酺酽酾酿醅醇醉醋醌醍醐醑醒醚醛醢醨醪醭'
|
338 |
+
'醮醯醴醵醺醾采釉释里重野量釐金釜鉴銎銮鋆鋈錾鍪鎏鏊鏖鐾鑫钆钇针钉钊钋钌钍钎钏钐钒'
|
339 |
+
'钓钔钕钖钗钘钙钚钛钜钝钞钟钠钡钢钣钤钥钦钧钨钩钪钫钬钭钮钯钰钱钲钳钴钵钷钹钺钻钼'
|
340 |
+
'钽钾钿铀铁铂铃铄铅铆铈铉铊铋铌铍铎铏铐铑铒铕铖铗铘铙铚铛铜铝铞铟铠铡铢铣铤铥铧铨'
|
341 |
+
'铩铪铫铬铭铮铯铰铱铲铳铴铵银铷铸铹铺铻铼铽链铿销锁锂锃锄锅锆锇锈锉锊锋锌锍锎锏锐'
|
342 |
+
'锑锒锓锔锕锖锗锘错锚锛锜锝锞锟锡锢锣锤锥锦锧锨锩锪锫锬锭键锯锰锱锲锳锴锵锶锷锸锹'
|
343 |
+
'锺锻锼锽锾锿镀镁镂镃镄镅镆镇镈镉镊镋镌镍镎镏镐镑镒镓镔镕镖镗镘镚镛镜镝镞镠镡镢镣'
|
344 |
+
'镤镥镦镧镨镩镪镫镬镭镮镯镰镱镲镳镴镵镶长门闩闪闫闭问闯闰闱闲闳间闵闶闷闸闹闺闻闼'
|
345 |
+
'闽闾闿阀阁阂阃阄阅阆阇阈阉阊阋阌阍阎阏阐阑阒阔阕阖阗阘阙阚阜队阡阪阮阱防阳阴阵阶'
|
346 |
+
'阻阼阽阿陀陂附际陆陇陈陉陋陌降陎限陑陔陕陛陞陟陡院除陧陨险陪陬陲陴陵陶陷隃隅隆隈'
|
347 |
+
'隋隍随隐隔隗隘隙障隧隩隰隳隶隹隺隼隽难雀雁雄雅集雇雉雊雌雍雎雏雒雕雠雨雩雪雯雱雳'
|
348 |
+
'零雷雹雾需霁霄霅霆震霈霉霍霎霏霓霖霜霞霨霪霭霰露霸霹霾青靓靖静靛非靠靡面靥革靬靰'
|
349 |
+
'靳靴靶靸靺靼靽靿鞁鞅鞋鞍鞑鞒鞔鞘鞠鞡鞣鞧鞨鞫鞬鞭鞮鞯鞲鞳鞴韂韦韧韨韩韪韫韬韭音韵'
|
350 |
+
'韶页顶顷顸项顺须顼顽顾顿颀颁颂颃预颅领颇颈颉颊颋颌颍颎颏颐频颓颔颖颗题颙颚颛颜额'
|
351 |
+
'颞颟颠颡颢颤颥颦颧风飏飐飑飒飓飔飕飗飘飙飞食飧飨餍餐餮饔饕饥饧饨饩饪饫饬饭饮饯饰'
|
352 |
+
'饱饲饳饴饵饶饷饸饹饺饻饼饽饿馁馃馄馅馆馇馈馉馊馋馌馍馏馐馑馒馓馔馕首馗馘香馝馞馥'
|
353 |
+
'馧馨马驭驮驯驰驱驲驳驴驵驶驷驸驹驺驻驼驽驾驿骀骁骂骃骄骅骆骇骈骉骊骋验骍骎骏骐骑'
|
354 |
+
'骒骓骕骖骗骘骙骚骛骜骝骞骟骠骡骢骣骤骥骦骧骨骰骱骶骷骸骺骼髀髁髂髃髅髋髌髎髑髓高'
|
355 |
+
'髡髢髦髫髭髯髹髻髽鬃鬈鬏鬒鬓鬘鬟鬣鬯鬲鬶鬷鬻鬼魁魂魃魄魅魆魇魈魉魋魍魏魑魔鱼鱽鱾'
|
356 |
+
'鱿鲀鲁鲂鲃鲅鲆鲇鲈鲉鲊鲋鲌鲍鲎鲏鲐鲑鲒鲔鲕鲖鲗鲘鲙鲚鲛鲜鲝鲞鲟鲠鲡鲢鲣鲤鲥鲦鲧鲨'
|
357 |
+
'鲩鲪鲫鲬鲭鲮鲯鲰鲱鲲鲳鲴鲵鲷鲸鲹鲺鲻鲼鲽鲾鲿鳀鳁鳂鳃鳄鳅鳇鳈鳉鳊鳌鳍鳎鳏鳐鳑鳒鳓'
|
358 |
+
'鳔鳕鳖鳗鳘鳙鳚鳛鳜鳝鳞鳟鳠鳡鳢鳣鳤鸟鸠鸡鸢鸣鸤鸥鸦鸧鸨鸩鸪鸫鸬鸭鸮鸯鸰鸱鸲鸳鸵鸶'
|
359 |
+
'鸷鸸鸹鸺鸻鸼鸽鸾鸿鹀鹁鹂鹃鹄鹅鹆鹇鹈鹉鹊鹋鹌鹍鹎鹏鹐鹑鹒鹔鹕鹖鹗鹘鹙鹚鹛鹜鹝鹞鹟'
|
360 |
+
'鹠鹡鹢鹣鹤鹦鹧鹨鹩鹪鹫鹬鹭鹮鹯鹰鹱鹲鹳鹴鹾鹿麀麂麇麈麋麑麒麓麖麝麟麦麸麹麻麽麾黄'
|
361 |
+
'黇黉黍黎黏黑黔默黛黜黝黟黠黡黢黥黧黩黪黯黹黻黼黾鼋鼍鼎鼐鼒鼓鼗鼙鼠鼢鼩鼫鼬鼯鼱鼷'
|
362 |
+
'鼹鼻鼽鼾齁齇齉齐齑齿龀龁龂龃龄龅龆龇龈龉龊龋龌龙龚龛龟龠龢鿍鿎鿏㑇㑊㕮㘎㙍㙘㙦㛃'
|
363 |
+
'㛚㛹㟃㠇㠓㤘㥄㧐��㧟㫰㬊㬎㬚㭎㭕㮾㰀㳇㳘㳚㴔㵐㶲㸆㸌㺄㻬㽏㿠䁖䂮䃅䃎䅟䌹䎃䎖䏝䏡'
|
364 |
+
'䏲䐃䓖䓛䓨䓫䓬䗖䗛䗪䗴䜣䝙䢺䢼䣘䥽䦃䲟䲠䲢䴓䴔䴕䴖䴗䴘䴙䶮𠅤𠙶𠳐𡎚𡐓𣗋𣲗𣲘𣸣𤧛𤩽'
|
365 |
+
'𤫉𥔲𥕢𥖨𥻗𦈡𦒍𦙶𦝼𦭜𦰡𧿹𨐈𨙸𨚕𨟠𨭉𨱇𨱏𨱑𨱔𨺙𩽾𩾃𩾌𪟝𪣻𪤗𪨰𪨶𪩘𪾢𫄧𫄨𫄷𫄸𫇭𫌀𫍣𫍯'
|
366 |
+
'𫍲𫍽𫐄𫐐𫐓𫑡𫓧𫓯𫓶𫓹𫔍𫔎𫔶𫖮𫖯𫖳𫗧𫗴𫘜𫘝𫘦𫘧𫘨𫘪𫘬𫚕𫚖𫚭𫛭𫞩𫟅𫟦𫟹𫟼𫠆𫠊𫠜𫢸𫫇𫭟'
|
367 |
+
'𫭢𫭼𫮃𫰛𫵷𫶇𫷷𫸩𬀩𬀪𬂩𬃊𬇕𬇙𬇹𬉼𬊈𬊤𬌗𬍛𬍡𬍤𬒈𬒔𬒗𬕂𬘓𬘘𬘡𬘩𬘫𬘬𬘭𬘯𬙂𬙊𬙋𬜬𬜯𬞟'
|
368 |
+
'𬟁𬟽𬣙𬣞𬣡𬣳𬤇𬤊𬤝𬨂𬨎𬩽𬪩𬬩𬬭𬬮𬬱𬬸𬬹𬬻𬬿𬭁𬭊𬭎𬭚𬭛𬭤𬭩𬭬𬭯𬭳𬭶𬭸𬭼𬮱𬮿𬯀𬯎𬱖𬱟'
|
369 |
+
'𬳵𬳶𬳽𬳿𬴂𬴃𬴊𬶋𬶍𬶏𬶐𬶟𬶠𬶨𬶭𬶮𬷕𬸘𬸚𬸣𬸦𬸪𬹼𬺈𬺓'
|
370 |
+
)
|
371 |
+
CN_CHARS_EXT = '吶诶屌囧飚屄'
|
372 |
+
|
373 |
+
CN_CHARS = CN_CHARS_COMMON + CN_CHARS_EXT
|
374 |
+
IN_CH_CHARS = { c : True for c in CN_CHARS }
|
375 |
+
|
376 |
+
EN_CHARS = string.ascii_letters + string.digits
|
377 |
+
IN_EN_CHARS = { c : True for c in EN_CHARS }
|
378 |
+
|
379 |
+
VALID_CHARS = CN_CHARS + EN_CHARS + ' '
|
380 |
+
IN_VALID_CHARS = { c : True for c in VALID_CHARS }
|
381 |
+
|
382 |
+
# ================================================================================ #
|
383 |
+
# basic class
|
384 |
+
# ================================================================================ #
|
385 |
+
class ChineseChar(object):
|
386 |
+
"""
|
387 |
+
中文字符
|
388 |
+
每个字符对应简体和繁体,
|
389 |
+
e.g. 简体 = '负', 繁体 = '負'
|
390 |
+
转换时可转换为简体或繁体
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, simplified, traditional):
|
394 |
+
self.simplified = simplified
|
395 |
+
self.traditional = traditional
|
396 |
+
#self.__repr__ = self.__str__
|
397 |
+
|
398 |
+
def __str__(self):
|
399 |
+
return self.simplified or self.traditional or None
|
400 |
+
|
401 |
+
def __repr__(self):
|
402 |
+
return self.__str__()
|
403 |
+
|
404 |
+
|
405 |
+
class ChineseNumberUnit(ChineseChar):
|
406 |
+
"""
|
407 |
+
中文数字/数位字符
|
408 |
+
每个字符除繁简体外还有一个额外的大写字符
|
409 |
+
e.g. '陆' 和 '陸'
|
410 |
+
"""
|
411 |
+
|
412 |
+
def __init__(self, power, simplified, traditional, big_s, big_t):
|
413 |
+
super(ChineseNumberUnit, self).__init__(simplified, traditional)
|
414 |
+
self.power = power
|
415 |
+
self.big_s = big_s
|
416 |
+
self.big_t = big_t
|
417 |
+
|
418 |
+
def __str__(self):
|
419 |
+
return '10^{}'.format(self.power)
|
420 |
+
|
421 |
+
@classmethod
|
422 |
+
def create(cls, index, value, numbering_type=NUMBERING_TYPES[1], small_unit=False):
|
423 |
+
|
424 |
+
if small_unit:
|
425 |
+
return ChineseNumberUnit(power=index + 1,
|
426 |
+
simplified=value[0], traditional=value[1], big_s=value[1], big_t=value[1])
|
427 |
+
elif numbering_type == NUMBERING_TYPES[0]:
|
428 |
+
return ChineseNumberUnit(power=index + 8,
|
429 |
+
simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1])
|
430 |
+
elif numbering_type == NUMBERING_TYPES[1]:
|
431 |
+
return ChineseNumberUnit(power=(index + 2) * 4,
|
432 |
+
simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1])
|
433 |
+
elif numbering_type == NUMBERING_TYPES[2]:
|
434 |
+
return ChineseNumberUnit(power=pow(2, index + 3),
|
435 |
+
simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1])
|
436 |
+
else:
|
437 |
+
raise ValueError(
|
438 |
+
'Counting type should be in {0} ({1} provided).'.format(NUMBERING_TYPES, numbering_type))
|
439 |
+
|
440 |
+
|
441 |
+
class ChineseNumberDigit(ChineseChar):
|
442 |
+
"""
|
443 |
+
中文数字字符
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(self, value, simplified, traditional, big_s, big_t, alt_s=None, alt_t=None):
|
447 |
+
super(ChineseNumberDigit, self).__init__(simplified, traditional)
|
448 |
+
self.value = value
|
449 |
+
self.big_s = big_s
|
450 |
+
self.big_t = big_t
|
451 |
+
self.alt_s = alt_s
|
452 |
+
self.alt_t = alt_t
|
453 |
+
|
454 |
+
def __str__(self):
|
455 |
+
return str(self.value)
|
456 |
+
|
457 |
+
@classmethod
|
458 |
+
def create(cls, i, v):
|
459 |
+
return ChineseNumberDigit(i, v[0], v[1], v[2], v[3])
|
460 |
+
|
461 |
+
|
462 |
+
class ChineseMath(ChineseChar):
|
463 |
+
"""
|
464 |
+
中文数位字符
|
465 |
+
"""
|
466 |
+
|
467 |
+
def __init__(self, simplified, traditional, symbol, expression=None):
|
468 |
+
super(ChineseMath, self).__init__(simplified, traditional)
|
469 |
+
self.symbol = symbol
|
470 |
+
self.expression = expression
|
471 |
+
self.big_s = simplified
|
472 |
+
self.big_t = traditional
|
473 |
+
|
474 |
+
|
475 |
+
CC, CNU, CND, CM = ChineseChar, ChineseNumberUnit, ChineseNumberDigit, ChineseMath
|
476 |
+
|
477 |
+
|
478 |
+
class NumberSystem(object):
|
479 |
+
"""
|
480 |
+
中文数字系统
|
481 |
+
"""
|
482 |
+
pass
|
483 |
+
|
484 |
+
|
485 |
+
class MathSymbol(object):
|
486 |
+
"""
|
487 |
+
用于中文数字系统的数学符号 (繁/简体), e.g.
|
488 |
+
positive = ['正', '正']
|
489 |
+
negative = ['负', '負']
|
490 |
+
point = ['点', '點']
|
491 |
+
"""
|
492 |
+
|
493 |
+
def __init__(self, positive, negative, point):
|
494 |
+
self.positive = positive
|
495 |
+
self.negative = negative
|
496 |
+
self.point = point
|
497 |
+
|
498 |
+
def __iter__(self):
|
499 |
+
for v in self.__dict__.values():
|
500 |
+
yield v
|
501 |
+
|
502 |
+
|
503 |
+
# class OtherSymbol(object):
|
504 |
+
# """
|
505 |
+
# 其他符号
|
506 |
+
# """
|
507 |
+
#
|
508 |
+
# def __init__(self, sil):
|
509 |
+
# self.sil = sil
|
510 |
+
#
|
511 |
+
# def __iter__(self):
|
512 |
+
# for v in self.__dict__.values():
|
513 |
+
# yield v
|
514 |
+
|
515 |
+
|
516 |
+
# ================================================================================ #
|
517 |
+
# basic utils
|
518 |
+
# ================================================================================ #
|
519 |
+
def create_system(numbering_type=NUMBERING_TYPES[1]):
|
520 |
+
"""
|
521 |
+
根据数字系统类型返回创建相应的数字系统,默认为 mid
|
522 |
+
NUMBERING_TYPES = ['low', 'mid', 'high']: 中文数字系统类型
|
523 |
+
low: '兆' = '亿' * '十' = $10^{9}$, '京' = '兆' * '十', etc.
|
524 |
+
mid: '兆' = '亿' * '万' = $10^{12}$, '京' = '兆' * '万', etc.
|
525 |
+
high: '兆' = '亿' * '亿' = $10^{16}$, '京' = '兆' * '兆', etc.
|
526 |
+
返回对应的数字系统
|
527 |
+
"""
|
528 |
+
|
529 |
+
# chinese number units of '亿' and larger
|
530 |
+
all_larger_units = zip(
|
531 |
+
LARGER_CHINESE_NUMERING_UNITS_SIMPLIFIED, LARGER_CHINESE_NUMERING_UNITS_TRADITIONAL)
|
532 |
+
larger_units = [CNU.create(i, v, numbering_type, False)
|
533 |
+
for i, v in enumerate(all_larger_units)]
|
534 |
+
# chinese number units of '十, 百, 千, 万'
|
535 |
+
all_smaller_units = zip(
|
536 |
+
SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED, SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL)
|
537 |
+
smaller_units = [CNU.create(i, v, small_unit=True)
|
538 |
+
for i, v in enumerate(all_smaller_units)]
|
539 |
+
# digis
|
540 |
+
chinese_digis = zip(CHINESE_DIGIS, CHINESE_DIGIS,
|
541 |
+
BIG_CHINESE_DIGIS_SIMPLIFIED, BIG_CHINESE_DIGIS_TRADITIONAL)
|
542 |
+
digits = [CND.create(i, v) for i, v in enumerate(chinese_digis)]
|
543 |
+
digits[0].alt_s, digits[0].alt_t = ZERO_ALT, ZERO_ALT
|
544 |
+
digits[1].alt_s, digits[1].alt_t = ONE_ALT, ONE_ALT
|
545 |
+
digits[2].alt_s, digits[2].alt_t = TWO_ALTS[0], TWO_ALTS[1]
|
546 |
+
|
547 |
+
# symbols
|
548 |
+
positive_cn = CM(POSITIVE[0], POSITIVE[1], '+', lambda x: x)
|
549 |
+
negative_cn = CM(NEGATIVE[0], NEGATIVE[1], '-', lambda x: -x)
|
550 |
+
point_cn = CM(POINT[0], POINT[1], '.', lambda x,
|
551 |
+
y: float(str(x) + '.' + str(y)))
|
552 |
+
# sil_cn = CM(SIL[0], SIL[1], '-', lambda x, y: float(str(x) + '-' + str(y)))
|
553 |
+
system = NumberSystem()
|
554 |
+
system.units = smaller_units + larger_units
|
555 |
+
system.digits = digits
|
556 |
+
system.math = MathSymbol(positive_cn, negative_cn, point_cn)
|
557 |
+
# system.symbols = OtherSymbol(sil_cn)
|
558 |
+
return system
|
559 |
+
|
560 |
+
|
561 |
+
def chn2num(chinese_string, numbering_type=NUMBERING_TYPES[1]):
|
562 |
+
|
563 |
+
def get_symbol(char, system):
|
564 |
+
for u in system.units:
|
565 |
+
if char in [u.traditional, u.simplified, u.big_s, u.big_t]:
|
566 |
+
return u
|
567 |
+
for d in system.digits:
|
568 |
+
if char in [d.traditional, d.simplified, d.big_s, d.big_t, d.alt_s, d.alt_t]:
|
569 |
+
return d
|
570 |
+
for m in system.math:
|
571 |
+
if char in [m.traditional, m.simplified]:
|
572 |
+
return m
|
573 |
+
|
574 |
+
def string2symbols(chinese_string, system):
|
575 |
+
int_string, dec_string = chinese_string, ''
|
576 |
+
for p in [system.math.point.simplified, system.math.point.traditional]:
|
577 |
+
if p in chinese_string:
|
578 |
+
int_string, dec_string = chinese_string.split(p)
|
579 |
+
break
|
580 |
+
return [get_symbol(c, system) for c in int_string], \
|
581 |
+
[get_symbol(c, system) for c in dec_string]
|
582 |
+
|
583 |
+
def correct_symbols(integer_symbols, system):
|
584 |
+
"""
|
585 |
+
一百八 to 一百八十
|
586 |
+
一亿一千三百万 to 一亿 一千万 三百万
|
587 |
+
"""
|
588 |
+
|
589 |
+
if integer_symbols and isinstance(integer_symbols[0], CNU):
|
590 |
+
if integer_symbols[0].power == 1:
|
591 |
+
integer_symbols = [system.digits[1]] + integer_symbols
|
592 |
+
|
593 |
+
if len(integer_symbols) > 1:
|
594 |
+
if isinstance(integer_symbols[-1], CND) and isinstance(integer_symbols[-2], CNU):
|
595 |
+
integer_symbols.append(
|
596 |
+
CNU(integer_symbols[-2].power - 1, None, None, None, None))
|
597 |
+
|
598 |
+
result = []
|
599 |
+
unit_count = 0
|
600 |
+
for s in integer_symbols:
|
601 |
+
if isinstance(s, CND):
|
602 |
+
result.append(s)
|
603 |
+
unit_count = 0
|
604 |
+
elif isinstance(s, CNU):
|
605 |
+
current_unit = CNU(s.power, None, None, None, None)
|
606 |
+
unit_count += 1
|
607 |
+
|
608 |
+
if unit_count == 1:
|
609 |
+
result.append(current_unit)
|
610 |
+
elif unit_count > 1:
|
611 |
+
for i in range(len(result)):
|
612 |
+
if isinstance(result[-i - 1], CNU) and result[-i - 1].power < current_unit.power:
|
613 |
+
result[-i - 1] = CNU(result[-i - 1].power +
|
614 |
+
current_unit.power, None, None, None, None)
|
615 |
+
return result
|
616 |
+
|
617 |
+
def compute_value(integer_symbols):
|
618 |
+
"""
|
619 |
+
Compute the value.
|
620 |
+
When current unit is larger than previous unit, current unit * all previous units will be used as all previous units.
|
621 |
+
e.g. '两千万' = 2000 * 10000 not 2000 + 10000
|
622 |
+
"""
|
623 |
+
value = [0]
|
624 |
+
last_power = 0
|
625 |
+
for s in integer_symbols:
|
626 |
+
if isinstance(s, CND):
|
627 |
+
value[-1] = s.value
|
628 |
+
elif isinstance(s, CNU):
|
629 |
+
value[-1] *= pow(10, s.power)
|
630 |
+
if s.power > last_power:
|
631 |
+
value[:-1] = list(map(lambda v: v *
|
632 |
+
pow(10, s.power), value[:-1]))
|
633 |
+
last_power = s.power
|
634 |
+
value.append(0)
|
635 |
+
return sum(value)
|
636 |
+
|
637 |
+
system = create_system(numbering_type)
|
638 |
+
int_part, dec_part = string2symbols(chinese_string, system)
|
639 |
+
int_part = correct_symbols(int_part, system)
|
640 |
+
int_str = str(compute_value(int_part))
|
641 |
+
dec_str = ''.join([str(d.value) for d in dec_part])
|
642 |
+
if dec_part:
|
643 |
+
return '{0}.{1}'.format(int_str, dec_str)
|
644 |
+
else:
|
645 |
+
return int_str
|
646 |
+
|
647 |
+
|
648 |
+
def num2chn(number_string, numbering_type=NUMBERING_TYPES[1], big=False,
|
649 |
+
traditional=False, alt_zero=False, alt_one=False, alt_two=True,
|
650 |
+
use_zeros=True, use_units=True):
|
651 |
+
|
652 |
+
def get_value(value_string, use_zeros=True):
|
653 |
+
|
654 |
+
striped_string = value_string.lstrip('0')
|
655 |
+
|
656 |
+
# record nothing if all zeros
|
657 |
+
if not striped_string:
|
658 |
+
return []
|
659 |
+
|
660 |
+
# record one digits
|
661 |
+
elif len(striped_string) == 1:
|
662 |
+
if use_zeros and len(value_string) != len(striped_string):
|
663 |
+
return [system.digits[0], system.digits[int(striped_string)]]
|
664 |
+
else:
|
665 |
+
return [system.digits[int(striped_string)]]
|
666 |
+
|
667 |
+
# recursively record multiple digits
|
668 |
+
else:
|
669 |
+
result_unit = next(u for u in reversed(
|
670 |
+
system.units) if u.power < len(striped_string))
|
671 |
+
result_string = value_string[:-result_unit.power]
|
672 |
+
return get_value(result_string) + [result_unit] + get_value(striped_string[-result_unit.power:])
|
673 |
+
|
674 |
+
system = create_system(numbering_type)
|
675 |
+
|
676 |
+
int_dec = number_string.split('.')
|
677 |
+
if len(int_dec) == 1:
|
678 |
+
int_string = int_dec[0]
|
679 |
+
dec_string = ""
|
680 |
+
elif len(int_dec) == 2:
|
681 |
+
int_string = int_dec[0]
|
682 |
+
dec_string = int_dec[1]
|
683 |
+
else:
|
684 |
+
raise ValueError(
|
685 |
+
"invalid input num string with more than one dot: {}".format(number_string))
|
686 |
+
|
687 |
+
if use_units and len(int_string) > 1:
|
688 |
+
result_symbols = get_value(int_string)
|
689 |
+
else:
|
690 |
+
result_symbols = [system.digits[int(c)] for c in int_string]
|
691 |
+
dec_symbols = [system.digits[int(c)] for c in dec_string]
|
692 |
+
if dec_string:
|
693 |
+
result_symbols += [system.math.point] + dec_symbols
|
694 |
+
|
695 |
+
if alt_two:
|
696 |
+
liang = CND(2, system.digits[2].alt_s, system.digits[2].alt_t,
|
697 |
+
system.digits[2].big_s, system.digits[2].big_t)
|
698 |
+
for i, v in enumerate(result_symbols):
|
699 |
+
if isinstance(v, CND) and v.value == 2:
|
700 |
+
next_symbol = result_symbols[i +
|
701 |
+
1] if i < len(result_symbols) - 1 else None
|
702 |
+
previous_symbol = result_symbols[i - 1] if i > 0 else None
|
703 |
+
if isinstance(next_symbol, CNU) and isinstance(previous_symbol, (CNU, type(None))):
|
704 |
+
if next_symbol.power != 1 and ((previous_symbol is None) or (previous_symbol.power != 1)):
|
705 |
+
result_symbols[i] = liang
|
706 |
+
|
707 |
+
# if big is True, '两' will not be used and `alt_two` has no impact on output
|
708 |
+
if big:
|
709 |
+
attr_name = 'big_'
|
710 |
+
if traditional:
|
711 |
+
attr_name += 't'
|
712 |
+
else:
|
713 |
+
attr_name += 's'
|
714 |
+
else:
|
715 |
+
if traditional:
|
716 |
+
attr_name = 'traditional'
|
717 |
+
else:
|
718 |
+
attr_name = 'simplified'
|
719 |
+
|
720 |
+
result = ''.join([getattr(s, attr_name) for s in result_symbols])
|
721 |
+
|
722 |
+
# if not use_zeros:
|
723 |
+
# result = result.strip(getattr(system.digits[0], attr_name))
|
724 |
+
|
725 |
+
if alt_zero:
|
726 |
+
result = result.replace(
|
727 |
+
getattr(system.digits[0], attr_name), system.digits[0].alt_s)
|
728 |
+
|
729 |
+
if alt_one:
|
730 |
+
result = result.replace(
|
731 |
+
getattr(system.digits[1], attr_name), system.digits[1].alt_s)
|
732 |
+
|
733 |
+
for i, p in enumerate(POINT):
|
734 |
+
if result.startswith(p):
|
735 |
+
return CHINESE_DIGIS[0] + result
|
736 |
+
|
737 |
+
# ^10, 11, .., 19
|
738 |
+
if len(result) >= 2 and result[1] in [SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED[0],
|
739 |
+
SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL[0]] and \
|
740 |
+
result[0] in [CHINESE_DIGIS[1], BIG_CHINESE_DIGIS_SIMPLIFIED[1], BIG_CHINESE_DIGIS_TRADITIONAL[1]]:
|
741 |
+
result = result[1:]
|
742 |
+
|
743 |
+
return result
|
744 |
+
|
745 |
+
|
746 |
+
# ================================================================================ #
|
747 |
+
# different types of rewriters
|
748 |
+
# ================================================================================ #
|
749 |
+
class Cardinal:
|
750 |
+
"""
|
751 |
+
CARDINAL类
|
752 |
+
"""
|
753 |
+
|
754 |
+
def __init__(self, cardinal=None, chntext=None):
|
755 |
+
self.cardinal = cardinal
|
756 |
+
self.chntext = chntext
|
757 |
+
|
758 |
+
def chntext2cardinal(self):
|
759 |
+
return chn2num(self.chntext)
|
760 |
+
|
761 |
+
def cardinal2chntext(self):
|
762 |
+
return num2chn(self.cardinal)
|
763 |
+
|
764 |
+
class Digit:
|
765 |
+
"""
|
766 |
+
DIGIT类
|
767 |
+
"""
|
768 |
+
|
769 |
+
def __init__(self, digit=None, chntext=None):
|
770 |
+
self.digit = digit
|
771 |
+
self.chntext = chntext
|
772 |
+
|
773 |
+
# def chntext2digit(self):
|
774 |
+
# return chn2num(self.chntext)
|
775 |
+
|
776 |
+
def digit2chntext(self):
|
777 |
+
return num2chn(self.digit, alt_two=False, use_units=False)
|
778 |
+
|
779 |
+
|
780 |
+
class TelePhone:
|
781 |
+
"""
|
782 |
+
TELEPHONE类
|
783 |
+
"""
|
784 |
+
|
785 |
+
def __init__(self, telephone=None, raw_chntext=None, chntext=None):
|
786 |
+
self.telephone = telephone
|
787 |
+
self.raw_chntext = raw_chntext
|
788 |
+
self.chntext = chntext
|
789 |
+
|
790 |
+
# def chntext2telephone(self):
|
791 |
+
# sil_parts = self.raw_chntext.split('<SIL>')
|
792 |
+
# self.telephone = '-'.join([
|
793 |
+
# str(chn2num(p)) for p in sil_parts
|
794 |
+
# ])
|
795 |
+
# return self.telephone
|
796 |
+
|
797 |
+
def telephone2chntext(self, fixed=False):
|
798 |
+
|
799 |
+
if fixed:
|
800 |
+
sil_parts = self.telephone.split('-')
|
801 |
+
self.raw_chntext = '<SIL>'.join([
|
802 |
+
num2chn(part, alt_two=False, use_units=False) for part in sil_parts
|
803 |
+
])
|
804 |
+
self.chntext = self.raw_chntext.replace('<SIL>', '')
|
805 |
+
else:
|
806 |
+
sp_parts = self.telephone.strip('+').split()
|
807 |
+
self.raw_chntext = '<SP>'.join([
|
808 |
+
num2chn(part, alt_two=False, use_units=False) for part in sp_parts
|
809 |
+
])
|
810 |
+
self.chntext = self.raw_chntext.replace('<SP>', '')
|
811 |
+
return self.chntext
|
812 |
+
|
813 |
+
|
814 |
+
class Fraction:
|
815 |
+
"""
|
816 |
+
FRACTION类
|
817 |
+
"""
|
818 |
+
|
819 |
+
def __init__(self, fraction=None, chntext=None):
|
820 |
+
self.fraction = fraction
|
821 |
+
self.chntext = chntext
|
822 |
+
|
823 |
+
def chntext2fraction(self):
|
824 |
+
denominator, numerator = self.chntext.split('分之')
|
825 |
+
return chn2num(numerator) + '/' + chn2num(denominator)
|
826 |
+
|
827 |
+
def fraction2chntext(self):
|
828 |
+
numerator, denominator = self.fraction.split('/')
|
829 |
+
return num2chn(denominator) + '分之' + num2chn(numerator)
|
830 |
+
|
831 |
+
|
832 |
+
class Date:
|
833 |
+
"""
|
834 |
+
DATE类
|
835 |
+
"""
|
836 |
+
|
837 |
+
def __init__(self, date=None, chntext=None):
|
838 |
+
self.date = date
|
839 |
+
self.chntext = chntext
|
840 |
+
|
841 |
+
# def chntext2date(self):
|
842 |
+
# chntext = self.chntext
|
843 |
+
# try:
|
844 |
+
# year, other = chntext.strip().split('年', maxsplit=1)
|
845 |
+
# year = Digit(chntext=year).digit2chntext() + '年'
|
846 |
+
# except ValueError:
|
847 |
+
# other = chntext
|
848 |
+
# year = ''
|
849 |
+
# if other:
|
850 |
+
# try:
|
851 |
+
# month, day = other.strip().split('月', maxsplit=1)
|
852 |
+
# month = Cardinal(chntext=month).chntext2cardinal() + '月'
|
853 |
+
# except ValueError:
|
854 |
+
# day = chntext
|
855 |
+
# month = ''
|
856 |
+
# if day:
|
857 |
+
# day = Cardinal(chntext=day[:-1]).chntext2cardinal() + day[-1]
|
858 |
+
# else:
|
859 |
+
# month = ''
|
860 |
+
# day = ''
|
861 |
+
# date = year + month + day
|
862 |
+
# self.date = date
|
863 |
+
# return self.date
|
864 |
+
|
865 |
+
def date2chntext(self):
|
866 |
+
date = self.date
|
867 |
+
try:
|
868 |
+
year, other = date.strip().split('年', 1)
|
869 |
+
year = Digit(digit=year).digit2chntext() + '年'
|
870 |
+
except ValueError:
|
871 |
+
other = date
|
872 |
+
year = ''
|
873 |
+
if other:
|
874 |
+
try:
|
875 |
+
month, day = other.strip().split('月', 1)
|
876 |
+
month = Cardinal(cardinal=month).cardinal2chntext() + '月'
|
877 |
+
except ValueError:
|
878 |
+
day = date
|
879 |
+
month = ''
|
880 |
+
if day:
|
881 |
+
day = Cardinal(cardinal=day[:-1]).cardinal2chntext() + day[-1]
|
882 |
+
else:
|
883 |
+
month = ''
|
884 |
+
day = ''
|
885 |
+
chntext = year + month + day
|
886 |
+
self.chntext = chntext
|
887 |
+
return self.chntext
|
888 |
+
|
889 |
+
|
890 |
+
class Money:
|
891 |
+
"""
|
892 |
+
MONEY类
|
893 |
+
"""
|
894 |
+
|
895 |
+
def __init__(self, money=None, chntext=None):
|
896 |
+
self.money = money
|
897 |
+
self.chntext = chntext
|
898 |
+
|
899 |
+
# def chntext2money(self):
|
900 |
+
# return self.money
|
901 |
+
|
902 |
+
def money2chntext(self):
|
903 |
+
money = self.money
|
904 |
+
pattern = re.compile(r'(\d+(\.\d+)?)')
|
905 |
+
matchers = pattern.findall(money)
|
906 |
+
if matchers:
|
907 |
+
for matcher in matchers:
|
908 |
+
money = money.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext())
|
909 |
+
self.chntext = money
|
910 |
+
return self.chntext
|
911 |
+
|
912 |
+
|
913 |
+
class Percentage:
|
914 |
+
"""
|
915 |
+
PERCENTAGE类
|
916 |
+
"""
|
917 |
+
|
918 |
+
def __init__(self, percentage=None, chntext=None):
|
919 |
+
self.percentage = percentage
|
920 |
+
self.chntext = chntext
|
921 |
+
|
922 |
+
def chntext2percentage(self):
|
923 |
+
return chn2num(self.chntext.strip().strip('百分之')) + '%'
|
924 |
+
|
925 |
+
def percentage2chntext(self):
|
926 |
+
return '百分之' + num2chn(self.percentage.strip().strip('%'))
|
927 |
+
|
928 |
+
|
929 |
+
def normalize_nsw(raw_text):
|
930 |
+
text = '^' + raw_text + '$'
|
931 |
+
|
932 |
+
# 规范化日期
|
933 |
+
pattern = re.compile(r"\D+((([089]\d|(19|20)\d{2})年)?(\d{1,2}月(\d{1,2}[日号])?)?)")
|
934 |
+
matchers = pattern.findall(text)
|
935 |
+
if matchers:
|
936 |
+
#print('date')
|
937 |
+
for matcher in matchers:
|
938 |
+
text = text.replace(matcher[0], Date(date=matcher[0]).date2chntext(), 1)
|
939 |
+
|
940 |
+
# 规范化金钱
|
941 |
+
pattern = re.compile(r"\D+((\d+(\.\d+)?)[多余几]?" + CURRENCY_UNITS + r"(\d" + CURRENCY_UNITS + r"?)?)")
|
942 |
+
matchers = pattern.findall(text)
|
943 |
+
if matchers:
|
944 |
+
#print('money')
|
945 |
+
for matcher in matchers:
|
946 |
+
text = text.replace(matcher[0], Money(money=matcher[0]).money2chntext(), 1)
|
947 |
+
|
948 |
+
# 规范化固话/手机号码
|
949 |
+
# 手机
|
950 |
+
# http://www.jihaoba.com/news/show/13680
|
951 |
+
# 移动:139、138、137、136、135、134、159、158、157、150、151、152、188、187、182、183、184、178、198
|
952 |
+
# 联通:130、131、132、156、155、186、185、176
|
953 |
+
# 电信:133、153、189、180、181、177
|
954 |
+
pattern = re.compile(r"\D((\+?86 ?)?1([38]\d|5[0-35-9]|7[678]|9[89])\d{8})\D")
|
955 |
+
matchers = pattern.findall(text)
|
956 |
+
if matchers:
|
957 |
+
#print('telephone')
|
958 |
+
for matcher in matchers:
|
959 |
+
text = text.replace(matcher[0], TelePhone(telephone=matcher[0]).telephone2chntext(), 1)
|
960 |
+
# 固话
|
961 |
+
pattern = re.compile(r"\D((0(10|2[1-3]|[3-9]\d{2})-?)?[1-9]\d{6,7})\D")
|
962 |
+
matchers = pattern.findall(text)
|
963 |
+
if matchers:
|
964 |
+
# print('fixed telephone')
|
965 |
+
for matcher in matchers:
|
966 |
+
text = text.replace(matcher[0], TelePhone(telephone=matcher[0]).telephone2chntext(fixed=True), 1)
|
967 |
+
|
968 |
+
# 规范化分数
|
969 |
+
pattern = re.compile(r"(\d+/\d+)")
|
970 |
+
matchers = pattern.findall(text)
|
971 |
+
if matchers:
|
972 |
+
#print('fraction')
|
973 |
+
for matcher in matchers:
|
974 |
+
text = text.replace(matcher, Fraction(fraction=matcher).fraction2chntext(), 1)
|
975 |
+
|
976 |
+
# 规范化百分数
|
977 |
+
text = text.replace('%', '%')
|
978 |
+
pattern = re.compile(r"(\d+(\.\d+)?%)")
|
979 |
+
matchers = pattern.findall(text)
|
980 |
+
if matchers:
|
981 |
+
#print('percentage')
|
982 |
+
for matcher in matchers:
|
983 |
+
text = text.replace(matcher[0], Percentage(percentage=matcher[0]).percentage2chntext(), 1)
|
984 |
+
|
985 |
+
# 规范化纯数+量词
|
986 |
+
pattern = re.compile(r"(\d+(\.\d+)?)[多余几]?" + COM_QUANTIFIERS)
|
987 |
+
matchers = pattern.findall(text)
|
988 |
+
if matchers:
|
989 |
+
#print('cardinal+quantifier')
|
990 |
+
for matcher in matchers:
|
991 |
+
text = text.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext(), 1)
|
992 |
+
|
993 |
+
# 规范化数字编号
|
994 |
+
pattern = re.compile(r"(\d{4,32})")
|
995 |
+
matchers = pattern.findall(text)
|
996 |
+
if matchers:
|
997 |
+
#print('digit')
|
998 |
+
for matcher in matchers:
|
999 |
+
text = text.replace(matcher, Digit(digit=matcher).digit2chntext(), 1)
|
1000 |
+
|
1001 |
+
# 规范化纯数
|
1002 |
+
pattern = re.compile(r"(\d+(\.\d+)?)")
|
1003 |
+
matchers = pattern.findall(text)
|
1004 |
+
if matchers:
|
1005 |
+
#print('cardinal')
|
1006 |
+
for matcher in matchers:
|
1007 |
+
text = text.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext(), 1)
|
1008 |
+
|
1009 |
+
|
1010 |
+
# restore P2P, O2O, B2C, B2B etc
|
1011 |
+
pattern = re.compile(r"(([a-zA-Z]+)二([a-zA-Z]+))")
|
1012 |
+
matchers = pattern.findall(text)
|
1013 |
+
if matchers:
|
1014 |
+
# print('particular')
|
1015 |
+
for matcher in matchers:
|
1016 |
+
text = text.replace(matcher[0], matcher[1]+'2'+matcher[2], 1)
|
1017 |
+
|
1018 |
+
return text.lstrip('^').rstrip('$')
|
1019 |
+
|
1020 |
+
|
1021 |
+
def remove_erhua(text):
|
1022 |
+
"""
|
1023 |
+
去除儿化音词中的儿:
|
1024 |
+
他女儿在那边儿 -> 他女儿在那边
|
1025 |
+
"""
|
1026 |
+
|
1027 |
+
new_str=''
|
1028 |
+
while re.search('儿',text):
|
1029 |
+
a = re.search('儿',text).span()
|
1030 |
+
remove_er_flag = 0
|
1031 |
+
|
1032 |
+
if ER_WHITELIST_PATTERN.search(text):
|
1033 |
+
b = ER_WHITELIST_PATTERN.search(text).span()
|
1034 |
+
if b[0] <= a[0]:
|
1035 |
+
remove_er_flag = 1
|
1036 |
+
|
1037 |
+
if remove_er_flag == 0 :
|
1038 |
+
new_str = new_str + text[0:a[0]]
|
1039 |
+
text = text[a[1]:]
|
1040 |
+
else:
|
1041 |
+
new_str = new_str + text[0:b[1]]
|
1042 |
+
text = text[b[1]:]
|
1043 |
+
|
1044 |
+
text = new_str + text
|
1045 |
+
return text
|
1046 |
+
|
1047 |
+
|
1048 |
+
def remove_space(text):
|
1049 |
+
tokens = text.split()
|
1050 |
+
new = []
|
1051 |
+
for k,t in enumerate(tokens):
|
1052 |
+
if k != 0:
|
1053 |
+
if IN_EN_CHARS.get(tokens[k-1][-1]) and IN_EN_CHARS.get(t[0]):
|
1054 |
+
new.append(' ')
|
1055 |
+
new.append(t)
|
1056 |
+
return ''.join(new)
|
1057 |
+
|
1058 |
+
|
1059 |
+
class TextNorm:
|
1060 |
+
def __init__(self,
|
1061 |
+
to_banjiao:bool = False,
|
1062 |
+
to_upper:bool = False,
|
1063 |
+
to_lower:bool = False,
|
1064 |
+
remove_fillers:bool = False,
|
1065 |
+
remove_erhua:bool = False,
|
1066 |
+
check_chars:bool = False,
|
1067 |
+
remove_space:bool = False,
|
1068 |
+
cc_mode:str = '',
|
1069 |
+
) :
|
1070 |
+
self.to_banjiao = to_banjiao
|
1071 |
+
self.to_upper = to_upper
|
1072 |
+
self.to_lower = to_lower
|
1073 |
+
self.remove_fillers = remove_fillers
|
1074 |
+
self.remove_erhua = remove_erhua
|
1075 |
+
self.check_chars = check_chars
|
1076 |
+
self.remove_space = remove_space
|
1077 |
+
|
1078 |
+
self.cc = None
|
1079 |
+
if cc_mode:
|
1080 |
+
from opencc import OpenCC # Open Chinese Convert: pip install opencc
|
1081 |
+
self.cc = OpenCC(cc_mode)
|
1082 |
+
|
1083 |
+
def __call__(self, text):
|
1084 |
+
if self.cc:
|
1085 |
+
text = self.cc.convert(text)
|
1086 |
+
|
1087 |
+
if self.to_banjiao:
|
1088 |
+
text = text.translate(QJ2BJ_TRANSFORM)
|
1089 |
+
|
1090 |
+
if self.to_upper:
|
1091 |
+
text = text.upper()
|
1092 |
+
|
1093 |
+
if self.to_lower:
|
1094 |
+
text = text.lower()
|
1095 |
+
|
1096 |
+
if self.remove_fillers:
|
1097 |
+
for c in FILLER_CHARS:
|
1098 |
+
text = text.replace(c, '')
|
1099 |
+
|
1100 |
+
if self.remove_erhua:
|
1101 |
+
text = remove_erhua(text)
|
1102 |
+
|
1103 |
+
text = normalize_nsw(text)
|
1104 |
+
|
1105 |
+
text = text.translate(PUNCS_TRANSFORM)
|
1106 |
+
|
1107 |
+
if self.check_chars:
|
1108 |
+
for c in text:
|
1109 |
+
if not IN_VALID_CHARS.get(c):
|
1110 |
+
print(f'WARNING: illegal char {c} in: {text}', file=sys.stderr)
|
1111 |
+
return ''
|
1112 |
+
|
1113 |
+
if self.remove_space:
|
1114 |
+
text = remove_space(text)
|
1115 |
+
|
1116 |
+
return text
|
1117 |
+
|
1118 |
+
|
1119 |
+
if __name__ == '__main__':
|
1120 |
+
p = argparse.ArgumentParser()
|
1121 |
+
|
1122 |
+
# normalizer options
|
1123 |
+
p.add_argument('--to_banjiao', action='store_true', help='convert quanjiao chars to banjiao')
|
1124 |
+
p.add_argument('--to_upper', action='store_true', help='convert to upper case')
|
1125 |
+
p.add_argument('--to_lower', action='store_true', help='convert to lower case')
|
1126 |
+
p.add_argument('--remove_fillers', action='store_true', help='remove filler chars such as "呃, 啊"')
|
1127 |
+
p.add_argument('--remove_erhua', action='store_true', help='remove erhua chars such as "他女儿在那边儿 -> 他女儿在那边"')
|
1128 |
+
p.add_argument('--check_chars', action='store_true' , help='skip sentences containing illegal chars')
|
1129 |
+
p.add_argument('--remove_space', action='store_true' , help='remove whitespace')
|
1130 |
+
p.add_argument('--cc_mode', choices=['', 't2s', 's2t'], default='', help='convert between traditional to simplified')
|
1131 |
+
|
1132 |
+
# I/O options
|
1133 |
+
p.add_argument('--log_interval', type=int, default=10000, help='log interval in number of processed lines')
|
1134 |
+
p.add_argument('--has_key', action='store_true', help="will be deprecated, set --format ark instead")
|
1135 |
+
p.add_argument('--format', type=str, choices=['txt', 'ark', 'tsv'], default='txt', help='input format')
|
1136 |
+
p.add_argument('ifile', help='input filename, assume utf-8 encoding')
|
1137 |
+
p.add_argument('ofile', help='output filename')
|
1138 |
+
|
1139 |
+
args = p.parse_args()
|
1140 |
+
|
1141 |
+
if args.has_key:
|
1142 |
+
args.format = 'ark'
|
1143 |
+
|
1144 |
+
normalizer = TextNorm(
|
1145 |
+
to_banjiao = args.to_banjiao,
|
1146 |
+
to_upper = args.to_upper,
|
1147 |
+
to_lower = args.to_lower,
|
1148 |
+
remove_fillers = args.remove_fillers,
|
1149 |
+
remove_erhua = args.remove_erhua,
|
1150 |
+
check_chars = args.check_chars,
|
1151 |
+
remove_space = args.remove_space,
|
1152 |
+
cc_mode = args.cc_mode,
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
normalizer = TextNorm(
|
1156 |
+
to_banjiao = args.to_banjiao,
|
1157 |
+
to_upper = args.to_upper,
|
1158 |
+
to_lower = args.to_lower,
|
1159 |
+
remove_fillers = args.remove_fillers,
|
1160 |
+
remove_erhua = args.remove_erhua,
|
1161 |
+
check_chars = args.check_chars,
|
1162 |
+
remove_space = args.remove_space,
|
1163 |
+
cc_mode = args.cc_mode,
|
1164 |
+
)
|
1165 |
+
|
1166 |
+
ndone = 0
|
1167 |
+
with open(args.ifile, 'r', encoding = 'utf8') as istream, open(args.ofile, 'w+', encoding = 'utf8') as ostream:
|
1168 |
+
if args.format == 'tsv':
|
1169 |
+
reader = csv.DictReader(istream, delimiter = '\t')
|
1170 |
+
assert('TEXT' in reader.fieldnames)
|
1171 |
+
print('\t'.join(reader.fieldnames), file=ostream)
|
1172 |
+
|
1173 |
+
for item in reader:
|
1174 |
+
text = item['TEXT']
|
1175 |
+
|
1176 |
+
if text:
|
1177 |
+
text = normalizer(text)
|
1178 |
+
|
1179 |
+
if text:
|
1180 |
+
item['TEXT'] = text
|
1181 |
+
print('\t'.join([ item[f] for f in reader.fieldnames ]), file = ostream)
|
1182 |
+
|
1183 |
+
ndone += 1
|
1184 |
+
if ndone % args.log_interval == 0:
|
1185 |
+
print(f'text norm: {ndone} lines done.', file = sys.stderr, flush = True)
|
1186 |
+
else:
|
1187 |
+
for l in istream:
|
1188 |
+
key, text = '', ''
|
1189 |
+
if args.format == 'ark': # KALDI archive, line format: "key text"
|
1190 |
+
cols = l.strip().split(maxsplit=1)
|
1191 |
+
key, text = cols[0], cols[1] if len(cols) == 2 else ''
|
1192 |
+
else:
|
1193 |
+
text = l.strip()
|
1194 |
+
|
1195 |
+
if text:
|
1196 |
+
text = normalizer(text)
|
1197 |
+
|
1198 |
+
if text:
|
1199 |
+
if args.format == 'ark':
|
1200 |
+
print(key + '\t' + text, file = ostream)
|
1201 |
+
else:
|
1202 |
+
print(text, file = ostream)
|
1203 |
+
|
1204 |
+
ndone += 1
|
1205 |
+
if ndone % args.log_interval == 0:
|
1206 |
+
print(f'text norm: {ndone} lines done.', file = sys.stderr, flush = True)
|
1207 |
+
print(f'text norm: {ndone} lines done in total.', file = sys.stderr, flush = True)
|
TTS/TTS/tts/models/forward_tts.py
CHANGED
@@ -396,6 +396,7 @@ class ForwardTTS(BaseTTS):
|
|
396 |
- g: :math:`(B, C)`
|
397 |
"""
|
398 |
if hasattr(self, "emb_g"):
|
|
|
399 |
g = self.emb_g(g) # [B, C, 1]
|
400 |
if g is not None:
|
401 |
g = g.unsqueeze(-1)
|
@@ -683,9 +684,10 @@ class ForwardTTS(BaseTTS):
|
|
683 |
# encoder pass
|
684 |
o_en, x_mask, g, _ = self._forward_encoder(x, x_mask, g)
|
685 |
# duration predictor pass
|
686 |
-
o_dr_log = self.duration_predictor(o_en, x_mask)
|
687 |
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
|
688 |
y_lengths = o_dr.sum(1)
|
|
|
689 |
# pitch predictor pass
|
690 |
o_pitch = None
|
691 |
if self.args.use_pitch:
|
|
|
396 |
- g: :math:`(B, C)`
|
397 |
"""
|
398 |
if hasattr(self, "emb_g"):
|
399 |
+
g = g.type(torch.LongTensor)
|
400 |
g = self.emb_g(g) # [B, C, 1]
|
401 |
if g is not None:
|
402 |
g = g.unsqueeze(-1)
|
|
|
684 |
# encoder pass
|
685 |
o_en, x_mask, g, _ = self._forward_encoder(x, x_mask, g)
|
686 |
# duration predictor pass
|
687 |
+
o_dr_log = self.duration_predictor(o_en.squeeze(), x_mask)
|
688 |
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
|
689 |
y_lengths = o_dr.sum(1)
|
690 |
+
|
691 |
# pitch predictor pass
|
692 |
o_pitch = None
|
693 |
if self.args.use_pitch:
|
TTS/TTS/tts/models/xtts.py
CHANGED
@@ -13,9 +13,12 @@ from TTS.tts.layers.xtts.diffusion import SpacedDiffusion, get_named_beta_schedu
|
|
13 |
from TTS.tts.layers.xtts.gpt import GPT
|
14 |
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer
|
15 |
from TTS.tts.layers.xtts.vocoder import UnivNetGenerator
|
|
|
|
|
16 |
from TTS.tts.models.base_tts import BaseTTS
|
17 |
from TTS.utils.io import load_fsspec
|
18 |
|
|
|
19 |
|
20 |
def load_audio(audiopath, sr=22050):
|
21 |
"""
|
@@ -195,13 +198,12 @@ class XttsArgs(Coqpit):
|
|
195 |
Args:
|
196 |
gpt_batch_size (int): The size of the auto-regressive batch.
|
197 |
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True.
|
198 |
-
lazy_load (bool, optional): Whether to load models on demand. It reduces VRAM usage. Defaults to False.
|
199 |
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True.
|
200 |
gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None.
|
201 |
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
|
202 |
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
|
203 |
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
|
204 |
-
|
205 |
|
206 |
For GPT model:
|
207 |
ar_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
|
@@ -231,12 +233,13 @@ class XttsArgs(Coqpit):
|
|
231 |
|
232 |
gpt_batch_size: int = 1
|
233 |
enable_redaction: bool = False
|
234 |
-
lazy_load: bool = True
|
235 |
kv_cache: bool = True
|
236 |
gpt_checkpoint: str = None
|
237 |
clvp_checkpoint: str = None
|
238 |
decoder_checkpoint: str = None
|
239 |
num_chars: int = 255
|
|
|
|
|
240 |
|
241 |
# XTTS GPT Encoder params
|
242 |
tokenizer_file: str = ""
|
@@ -266,6 +269,15 @@ class XttsArgs(Coqpit):
|
|
266 |
diff_layer_drop: int = 0
|
267 |
diff_unconditioned_percentage: int = 0
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# constants
|
270 |
duration_const: int = 102400
|
271 |
|
@@ -285,7 +297,6 @@ class Xtts(BaseTTS):
|
|
285 |
|
286 |
def __init__(self, config: Coqpit):
|
287 |
super().__init__(config, ap=None, tokenizer=None)
|
288 |
-
self.lazy_load = self.args.lazy_load
|
289 |
self.mel_stats_path = None
|
290 |
self.config = config
|
291 |
self.gpt_checkpoint = self.args.gpt_checkpoint
|
@@ -295,14 +306,13 @@ class Xtts(BaseTTS):
|
|
295 |
|
296 |
self.tokenizer = VoiceBpeTokenizer()
|
297 |
self.gpt = None
|
298 |
-
self.diffusion_decoder = None
|
299 |
self.init_models()
|
300 |
self.register_buffer("mel_stats", torch.ones(80))
|
301 |
|
302 |
def init_models(self):
|
303 |
"""Initialize the models. We do it here since we need to load the tokenizer first."""
|
304 |
if self.tokenizer.tokenizer is not None:
|
305 |
-
self.args.gpt_number_text_tokens = self.tokenizer.
|
306 |
self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]")
|
307 |
self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]")
|
308 |
|
@@ -322,40 +332,50 @@ class Xtts(BaseTTS):
|
|
322 |
stop_audio_token=self.args.gpt_stop_audio_token,
|
323 |
)
|
324 |
|
325 |
-
self.diffusion_decoder = DiffusionTts(
|
326 |
-
model_channels=self.args.diff_model_channels,
|
327 |
-
num_layers=self.args.diff_num_layers,
|
328 |
-
in_channels=self.args.diff_in_channels,
|
329 |
-
out_channels=self.args.diff_out_channels,
|
330 |
-
in_latent_channels=self.args.diff_in_latent_channels,
|
331 |
-
in_tokens=self.args.diff_in_tokens,
|
332 |
-
dropout=self.args.diff_dropout,
|
333 |
-
use_fp16=self.args.diff_use_fp16,
|
334 |
-
num_heads=self.args.diff_num_heads,
|
335 |
-
layer_drop=self.args.diff_layer_drop,
|
336 |
-
unconditioned_percentage=self.args.diff_unconditioned_percentage,
|
337 |
-
)
|
338 |
|
339 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
@property
|
342 |
def device(self):
|
343 |
return next(self.parameters()).device
|
344 |
|
345 |
-
@
|
346 |
-
def lazy_load_model(self, model):
|
347 |
-
"""Context to load a model on demand.
|
348 |
-
|
349 |
-
Args:
|
350 |
-
model (nn.Module): The model to be loaded.
|
351 |
-
"""
|
352 |
-
if self.lazy_load:
|
353 |
-
yield model
|
354 |
-
else:
|
355 |
-
m = model.to(self.device)
|
356 |
-
yield m
|
357 |
-
m = model.cpu()
|
358 |
-
|
359 |
def get_gpt_cond_latents(self, audio_path: str, length: int = 3):
|
360 |
"""Compute the conditioning latents for the GPT model from the given audio.
|
361 |
|
@@ -370,6 +390,7 @@ class Xtts(BaseTTS):
|
|
370 |
cond_latent = self.gpt.get_style_emb(mel.to(self.device), sample=False)
|
371 |
return cond_latent.transpose(1, 2)
|
372 |
|
|
|
373 |
def get_diffusion_cond_latents(
|
374 |
self,
|
375 |
audio_path,
|
@@ -389,20 +410,33 @@ class Xtts(BaseTTS):
|
|
389 |
)
|
390 |
diffusion_conds.append(cond_mel)
|
391 |
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
392 |
-
|
393 |
-
diffusion_latent = diffusion.get_conditioning(diffusion_conds)
|
394 |
return diffusion_latent
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
def get_conditioning_latents(
|
397 |
self,
|
398 |
audio_path,
|
399 |
gpt_cond_len=3,
|
400 |
-
):
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
gpt_cond_latents = self.get_gpt_cond_latents(audio_path, length=gpt_cond_len) # [1, 1024, T]
|
402 |
-
diffusion_cond_latents
|
403 |
-
audio_path,
|
404 |
-
)
|
405 |
-
return gpt_cond_latents.to(self.device), diffusion_cond_latents.to(self.device)
|
406 |
|
407 |
def synthesize(self, text, config, speaker_wav, language, **kwargs):
|
408 |
"""Synthesize speech with the given input text.
|
@@ -447,10 +481,10 @@ class Xtts(BaseTTS):
|
|
447 |
"decoder_sampler": config.decoder_sampler,
|
448 |
}
|
449 |
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
450 |
-
return self.
|
451 |
|
452 |
-
@torch.
|
453 |
-
def
|
454 |
self,
|
455 |
text,
|
456 |
ref_audio_path,
|
@@ -469,6 +503,7 @@ class Xtts(BaseTTS):
|
|
469 |
cond_free_k=2,
|
470 |
diffusion_temperature=1.0,
|
471 |
decoder_sampler="ddim",
|
|
|
472 |
**hf_generate_kwargs,
|
473 |
):
|
474 |
"""
|
@@ -517,6 +552,9 @@ class Xtts(BaseTTS):
|
|
517 |
Values at 0 re the "mean" prediction of the diffusion network and will sound bland and smeared.
|
518 |
Defaults to 1.0.
|
519 |
|
|
|
|
|
|
|
520 |
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
|
521 |
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
522 |
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
@@ -525,81 +563,217 @@ class Xtts(BaseTTS):
|
|
525 |
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
526 |
Sample rate is 24kHz.
|
527 |
"""
|
528 |
-
text = f"[{language}]{text.strip().lower()}"
|
529 |
-
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
|
530 |
-
|
531 |
-
assert (
|
532 |
-
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
|
533 |
-
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
|
534 |
-
|
535 |
(
|
536 |
gpt_cond_latent,
|
537 |
diffusion_conditioning,
|
|
|
538 |
) = self.get_conditioning_latents(audio_path=ref_audio_path, gpt_cond_len=gpt_cond_len)
|
539 |
-
|
540 |
-
|
541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
cond_free=cond_free,
|
543 |
cond_free_k=cond_free_k,
|
544 |
-
|
|
|
|
|
|
|
545 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
gpt_codes = gpt.generate(
|
551 |
-
cond_latents=gpt_cond_latent,
|
552 |
-
text_inputs=text_tokens,
|
553 |
-
input_tokens=None,
|
554 |
-
do_sample=do_sample,
|
555 |
-
top_p=top_p,
|
556 |
-
top_k=top_k,
|
557 |
-
temperature=temperature,
|
558 |
-
num_return_sequences=self.gpt_batch_size,
|
559 |
-
length_penalty=length_penalty,
|
560 |
-
repetition_penalty=repetition_penalty,
|
561 |
-
output_attentions=False,
|
562 |
-
**hf_generate_kwargs,
|
563 |
-
)
|
564 |
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
mel = do_spectrogram_diffusion(
|
592 |
-
|
593 |
diffuser,
|
594 |
gpt_latents,
|
595 |
diffusion_conditioning,
|
596 |
temperature=diffusion_temperature,
|
597 |
)
|
598 |
-
|
599 |
-
wav = vocoder.inference(mel)
|
600 |
|
601 |
return {"wav": wav.cpu().numpy().squeeze()}
|
602 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
def forward(self):
|
604 |
raise NotImplementedError("XTTS Training is not implemented")
|
605 |
|
@@ -616,7 +790,14 @@ class Xtts(BaseTTS):
|
|
616 |
super().eval()
|
617 |
|
618 |
def load_checkpoint(
|
619 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
):
|
621 |
"""
|
622 |
Loads a checkpoint from disk and initializes the model's state and tokenizer.
|
@@ -626,7 +807,7 @@ class Xtts(BaseTTS):
|
|
626 |
checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None.
|
627 |
checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None.
|
628 |
vocab_path (str, optional): The path to the vocabulary file. Defaults to None.
|
629 |
-
eval (bool, optional): Whether to set the model to evaluation mode. Defaults to
|
630 |
strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True.
|
631 |
|
632 |
Returns:
|
@@ -636,19 +817,34 @@ class Xtts(BaseTTS):
|
|
636 |
model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth")
|
637 |
vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json")
|
638 |
|
639 |
-
if os.path.exists(
|
640 |
-
self.tokenizer = VoiceBpeTokenizer(vocab_file=
|
641 |
|
642 |
self.init_models()
|
643 |
-
|
644 |
-
|
645 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
if eval:
|
648 |
-
self.
|
|
|
|
|
|
|
|
|
649 |
self.gpt.eval()
|
650 |
-
self.diffusion_decoder.eval()
|
651 |
-
self.vocoder.eval()
|
652 |
|
653 |
def train_step(self):
|
654 |
raise NotImplementedError("XTTS Training is not implemented")
|
|
|
13 |
from TTS.tts.layers.xtts.gpt import GPT
|
14 |
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer
|
15 |
from TTS.tts.layers.xtts.vocoder import UnivNetGenerator
|
16 |
+
from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
|
17 |
+
from TTS.tts.layers.xtts.stream_generator import init_stream_support
|
18 |
from TTS.tts.models.base_tts import BaseTTS
|
19 |
from TTS.utils.io import load_fsspec
|
20 |
|
21 |
+
init_stream_support()
|
22 |
|
23 |
def load_audio(audiopath, sr=22050):
|
24 |
"""
|
|
|
198 |
Args:
|
199 |
gpt_batch_size (int): The size of the auto-regressive batch.
|
200 |
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True.
|
|
|
201 |
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True.
|
202 |
gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None.
|
203 |
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
|
204 |
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
|
205 |
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
|
206 |
+
use_hifigan (bool, optional): Whether to use hifigan or diffusion + univnet as a decoder. Defaults to True.
|
207 |
|
208 |
For GPT model:
|
209 |
ar_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
|
|
|
233 |
|
234 |
gpt_batch_size: int = 1
|
235 |
enable_redaction: bool = False
|
|
|
236 |
kv_cache: bool = True
|
237 |
gpt_checkpoint: str = None
|
238 |
clvp_checkpoint: str = None
|
239 |
decoder_checkpoint: str = None
|
240 |
num_chars: int = 255
|
241 |
+
use_hifigan: bool = True
|
242 |
+
use_ne_hifigan: bool = False
|
243 |
|
244 |
# XTTS GPT Encoder params
|
245 |
tokenizer_file: str = ""
|
|
|
269 |
diff_layer_drop: int = 0
|
270 |
diff_unconditioned_percentage: int = 0
|
271 |
|
272 |
+
# HifiGAN Decoder params
|
273 |
+
input_sample_rate: int = 22050
|
274 |
+
output_sample_rate: int = 24000
|
275 |
+
output_hop_length: int = 256
|
276 |
+
ar_mel_length_compression: int = 1024
|
277 |
+
decoder_input_dim: int = 1024
|
278 |
+
d_vector_dim: int = 512
|
279 |
+
cond_d_vector_in_each_upsampling_layer: bool = True
|
280 |
+
|
281 |
# constants
|
282 |
duration_const: int = 102400
|
283 |
|
|
|
297 |
|
298 |
def __init__(self, config: Coqpit):
|
299 |
super().__init__(config, ap=None, tokenizer=None)
|
|
|
300 |
self.mel_stats_path = None
|
301 |
self.config = config
|
302 |
self.gpt_checkpoint = self.args.gpt_checkpoint
|
|
|
306 |
|
307 |
self.tokenizer = VoiceBpeTokenizer()
|
308 |
self.gpt = None
|
|
|
309 |
self.init_models()
|
310 |
self.register_buffer("mel_stats", torch.ones(80))
|
311 |
|
312 |
def init_models(self):
|
313 |
"""Initialize the models. We do it here since we need to load the tokenizer first."""
|
314 |
if self.tokenizer.tokenizer is not None:
|
315 |
+
self.args.gpt_number_text_tokens = self.tokenizer.get_number_tokens()
|
316 |
self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]")
|
317 |
self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]")
|
318 |
|
|
|
332 |
stop_audio_token=self.args.gpt_stop_audio_token,
|
333 |
)
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
+
if self.args.use_hifigan:
|
337 |
+
self.hifigan_decoder = HifiDecoder(
|
338 |
+
input_sample_rate=self.args.input_sample_rate,
|
339 |
+
output_sample_rate=self.args.output_sample_rate,
|
340 |
+
output_hop_length=self.args.output_hop_length,
|
341 |
+
ar_mel_length_compression=self.args.ar_mel_length_compression,
|
342 |
+
decoder_input_dim=self.args.decoder_input_dim,
|
343 |
+
d_vector_dim=self.args.d_vector_dim,
|
344 |
+
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
|
345 |
+
)
|
346 |
+
|
347 |
+
if self.args.use_ne_hifigan:
|
348 |
+
self.ne_hifigan_decoder = HifiDecoder(
|
349 |
+
input_sample_rate=self.args.input_sample_rate,
|
350 |
+
output_sample_rate=self.args.output_sample_rate,
|
351 |
+
output_hop_length=self.args.output_hop_length,
|
352 |
+
ar_mel_length_compression=self.args.ar_mel_length_compression,
|
353 |
+
decoder_input_dim=self.args.decoder_input_dim,
|
354 |
+
d_vector_dim=self.args.d_vector_dim,
|
355 |
+
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
|
356 |
+
)
|
357 |
+
|
358 |
+
if not (self.args.use_hifigan or self.args.use_ne_hifigan):
|
359 |
+
self.diffusion_decoder = DiffusionTts(
|
360 |
+
model_channels=self.args.diff_model_channels,
|
361 |
+
num_layers=self.args.diff_num_layers,
|
362 |
+
in_channels=self.args.diff_in_channels,
|
363 |
+
out_channels=self.args.diff_out_channels,
|
364 |
+
in_latent_channels=self.args.diff_in_latent_channels,
|
365 |
+
in_tokens=self.args.diff_in_tokens,
|
366 |
+
dropout=self.args.diff_dropout,
|
367 |
+
use_fp16=self.args.diff_use_fp16,
|
368 |
+
num_heads=self.args.diff_num_heads,
|
369 |
+
layer_drop=self.args.diff_layer_drop,
|
370 |
+
unconditioned_percentage=self.args.diff_unconditioned_percentage,
|
371 |
+
)
|
372 |
+
self.vocoder = UnivNetGenerator()
|
373 |
|
374 |
@property
|
375 |
def device(self):
|
376 |
return next(self.parameters()).device
|
377 |
|
378 |
+
@torch.inference_mode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
def get_gpt_cond_latents(self, audio_path: str, length: int = 3):
|
380 |
"""Compute the conditioning latents for the GPT model from the given audio.
|
381 |
|
|
|
390 |
cond_latent = self.gpt.get_style_emb(mel.to(self.device), sample=False)
|
391 |
return cond_latent.transpose(1, 2)
|
392 |
|
393 |
+
@torch.inference_mode()
|
394 |
def get_diffusion_cond_latents(
|
395 |
self,
|
396 |
audio_path,
|
|
|
410 |
)
|
411 |
diffusion_conds.append(cond_mel)
|
412 |
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
413 |
+
diffusion_latent = self.diffusion_decoder.get_conditioning(diffusion_conds)
|
|
|
414 |
return diffusion_latent
|
415 |
|
416 |
+
@torch.inference_mode()
|
417 |
+
def get_speaker_embedding(
|
418 |
+
self,
|
419 |
+
audio_path
|
420 |
+
):
|
421 |
+
audio = load_audio(audio_path, self.hifigan_decoder.speaker_encoder_audio_config["sample_rate"])
|
422 |
+
speaker_embedding = self.hifigan_decoder.speaker_encoder.forward(
|
423 |
+
audio.to(self.device), l2_norm=True
|
424 |
+
).unsqueeze(-1).to(self.device)
|
425 |
+
return speaker_embedding
|
426 |
+
|
427 |
def get_conditioning_latents(
|
428 |
self,
|
429 |
audio_path,
|
430 |
gpt_cond_len=3,
|
431 |
+
):
|
432 |
+
speaker_embedding = None
|
433 |
+
diffusion_cond_latents = None
|
434 |
+
if self.args.use_hifigan:
|
435 |
+
speaker_embedding = self.get_speaker_embedding(audio_path)
|
436 |
+
else:
|
437 |
+
diffusion_cond_latents = self.get_diffusion_cond_latents(audio_path)
|
438 |
gpt_cond_latents = self.get_gpt_cond_latents(audio_path, length=gpt_cond_len) # [1, 1024, T]
|
439 |
+
return gpt_cond_latents, diffusion_cond_latents, speaker_embedding
|
|
|
|
|
|
|
440 |
|
441 |
def synthesize(self, text, config, speaker_wav, language, **kwargs):
|
442 |
"""Synthesize speech with the given input text.
|
|
|
481 |
"decoder_sampler": config.decoder_sampler,
|
482 |
}
|
483 |
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
484 |
+
return self.full_inference(text, ref_audio_path, language, **settings)
|
485 |
|
486 |
+
@torch.inference_mode()
|
487 |
+
def full_inference(
|
488 |
self,
|
489 |
text,
|
490 |
ref_audio_path,
|
|
|
503 |
cond_free_k=2,
|
504 |
diffusion_temperature=1.0,
|
505 |
decoder_sampler="ddim",
|
506 |
+
decoder="hifigan",
|
507 |
**hf_generate_kwargs,
|
508 |
):
|
509 |
"""
|
|
|
552 |
Values at 0 re the "mean" prediction of the diffusion network and will sound bland and smeared.
|
553 |
Defaults to 1.0.
|
554 |
|
555 |
+
decoder: (str) Selects the decoder to use between ("hifigan", "ne_hifigan" and "diffusion")
|
556 |
+
Defaults to hifigan
|
557 |
+
|
558 |
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
|
559 |
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
560 |
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
|
|
563 |
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
564 |
Sample rate is 24kHz.
|
565 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
566 |
(
|
567 |
gpt_cond_latent,
|
568 |
diffusion_conditioning,
|
569 |
+
speaker_embedding
|
570 |
) = self.get_conditioning_latents(audio_path=ref_audio_path, gpt_cond_len=gpt_cond_len)
|
571 |
+
return self.inference(
|
572 |
+
text,
|
573 |
+
language,
|
574 |
+
gpt_cond_latent,
|
575 |
+
speaker_embedding,
|
576 |
+
diffusion_conditioning,
|
577 |
+
temperature=temperature,
|
578 |
+
length_penalty=length_penalty,
|
579 |
+
repetition_penalty=repetition_penalty,
|
580 |
+
top_k=top_k,
|
581 |
+
top_p=top_p,
|
582 |
+
do_sample=do_sample,
|
583 |
+
decoder_iterations=decoder_iterations,
|
584 |
cond_free=cond_free,
|
585 |
cond_free_k=cond_free_k,
|
586 |
+
diffusion_temperature=diffusion_temperature,
|
587 |
+
decoder_sampler=decoder_sampler,
|
588 |
+
decoder=decoder,
|
589 |
+
**hf_generate_kwargs,
|
590 |
)
|
591 |
+
|
592 |
+
@torch.inference_mode()
|
593 |
+
def inference(
|
594 |
+
self,
|
595 |
+
text,
|
596 |
+
language,
|
597 |
+
gpt_cond_latent,
|
598 |
+
speaker_embedding,
|
599 |
+
diffusion_conditioning,
|
600 |
+
# GPT inference
|
601 |
+
temperature=0.65,
|
602 |
+
length_penalty=1,
|
603 |
+
repetition_penalty=2.0,
|
604 |
+
top_k=50,
|
605 |
+
top_p=0.85,
|
606 |
+
do_sample=True,
|
607 |
+
# Decoder inference
|
608 |
+
decoder_iterations=100,
|
609 |
+
cond_free=True,
|
610 |
+
cond_free_k=2,
|
611 |
+
diffusion_temperature=1.0,
|
612 |
+
decoder_sampler="ddim",
|
613 |
+
decoder="hifigan",
|
614 |
+
**hf_generate_kwargs,
|
615 |
+
):
|
616 |
+
text = f"[{language}]{text.strip().lower()}"
|
617 |
+
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
|
618 |
|
619 |
+
assert (
|
620 |
+
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
|
621 |
+
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
|
623 |
+
if not self.args.use_hifigan:
|
624 |
+
diffuser = load_discrete_vocoder_diffuser(
|
625 |
+
desired_diffusion_steps=decoder_iterations,
|
626 |
+
cond_free=cond_free,
|
627 |
+
cond_free_k=cond_free_k,
|
628 |
+
sampler=decoder_sampler,
|
629 |
+
)
|
630 |
+
|
631 |
+
with torch.no_grad():
|
632 |
+
gpt_codes = self.gpt.generate(
|
633 |
+
cond_latents=gpt_cond_latent,
|
634 |
+
text_inputs=text_tokens,
|
635 |
+
input_tokens=None,
|
636 |
+
do_sample=do_sample,
|
637 |
+
top_p=top_p,
|
638 |
+
top_k=top_k,
|
639 |
+
temperature=temperature,
|
640 |
+
num_return_sequences=self.gpt_batch_size,
|
641 |
+
length_penalty=length_penalty,
|
642 |
+
repetition_penalty=repetition_penalty,
|
643 |
+
output_attentions=False,
|
644 |
+
**hf_generate_kwargs,
|
645 |
+
)
|
646 |
+
expected_output_len = torch.tensor(
|
647 |
+
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
|
648 |
+
)
|
649 |
+
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
|
650 |
+
gpt_latents = self.gpt(
|
651 |
+
text_tokens,
|
652 |
+
text_len,
|
653 |
+
gpt_codes,
|
654 |
+
expected_output_len,
|
655 |
+
cond_latents=gpt_cond_latent,
|
656 |
+
return_attentions=False,
|
657 |
+
return_latent=True,
|
658 |
+
)
|
659 |
+
silence_token = 83
|
660 |
+
ctokens = 0
|
661 |
+
for k in range(gpt_codes.shape[-1]):
|
662 |
+
if gpt_codes[0, k] == silence_token:
|
663 |
+
ctokens += 1
|
664 |
+
else:
|
665 |
+
ctokens = 0
|
666 |
+
if ctokens > 8:
|
667 |
+
gpt_latents = gpt_latents[:, :k]
|
668 |
+
break
|
669 |
+
|
670 |
+
if decoder == "hifigan":
|
671 |
+
assert hasattr(self, "hifigan_decoder"), "You must enable hifigan decoder to use it by setting config `use_hifigan: true`"
|
672 |
+
wav = self.hifigan_decoder(gpt_latents, g=speaker_embedding)
|
673 |
+
elif decoder == "ne_hifigan":
|
674 |
+
assert hasattr(self, "ne_hifigan_decoder"), "You must enable ne_hifigan decoder to use it by setting config `use_ne_hifigan: true`"
|
675 |
+
wav = self.ne_hifigan_decoder(gpt_latents, g=speaker_embedding)
|
676 |
+
else:
|
677 |
+
assert hasattr(self, "diffusion_decoder"), "You must disable hifigan decoders to use difffusion by setting config `use_ne_hifigan: false` and `use_hifigan: false`"
|
678 |
mel = do_spectrogram_diffusion(
|
679 |
+
self.diffusion_decoder,
|
680 |
diffuser,
|
681 |
gpt_latents,
|
682 |
diffusion_conditioning,
|
683 |
temperature=diffusion_temperature,
|
684 |
)
|
685 |
+
wav = self.vocoder.inference(mel)
|
|
|
686 |
|
687 |
return {"wav": wav.cpu().numpy().squeeze()}
|
688 |
|
689 |
+
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
|
690 |
+
"""Handle chunk formatting in streaming mode"""
|
691 |
+
wav_chunk = wav_gen[:-overlap_len]
|
692 |
+
if wav_gen_prev is not None:
|
693 |
+
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len]
|
694 |
+
if wav_overlap is not None:
|
695 |
+
crossfade_wav = wav_chunk[:overlap_len]
|
696 |
+
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
|
697 |
+
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
|
698 |
+
wav_chunk[:overlap_len] += crossfade_wav
|
699 |
+
wav_overlap = wav_gen[-overlap_len:]
|
700 |
+
wav_gen_prev = wav_gen
|
701 |
+
return wav_chunk, wav_gen_prev, wav_overlap
|
702 |
+
|
703 |
+
@torch.inference_mode()
|
704 |
+
def inference_stream(
|
705 |
+
self,
|
706 |
+
text,
|
707 |
+
language,
|
708 |
+
gpt_cond_latent,
|
709 |
+
speaker_embedding,
|
710 |
+
# Streaming
|
711 |
+
stream_chunk_size=20,
|
712 |
+
overlap_wav_len=1024,
|
713 |
+
# GPT inference
|
714 |
+
temperature=0.65,
|
715 |
+
length_penalty=1,
|
716 |
+
repetition_penalty=2.0,
|
717 |
+
top_k=50,
|
718 |
+
top_p=0.85,
|
719 |
+
do_sample=True,
|
720 |
+
# Decoder inference
|
721 |
+
decoder="hifigan",
|
722 |
+
**hf_generate_kwargs,
|
723 |
+
):
|
724 |
+
assert hasattr(self, "hifigan_decoder"), "`inference_stream` requires use_hifigan to be set to true in the config.model_args, diffusion is too slow to stream."
|
725 |
+
text = f"[{language}]{text.strip().lower()}"
|
726 |
+
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
|
727 |
+
|
728 |
+
fake_inputs = self.gpt.compute_embeddings(
|
729 |
+
gpt_cond_latent.to(self.device),
|
730 |
+
text_tokens,
|
731 |
+
)
|
732 |
+
gpt_generator = self.gpt.get_generator(
|
733 |
+
fake_inputs=fake_inputs,
|
734 |
+
top_k=top_k,
|
735 |
+
top_p=top_p,
|
736 |
+
temperature=temperature,
|
737 |
+
do_sample=do_sample,
|
738 |
+
num_beams=1,
|
739 |
+
num_return_sequences=1,
|
740 |
+
length_penalty=float(length_penalty),
|
741 |
+
repetition_penalty=float(repetition_penalty),
|
742 |
+
output_attentions=False,
|
743 |
+
output_hidden_states=True,
|
744 |
+
**hf_generate_kwargs,
|
745 |
+
)
|
746 |
+
|
747 |
+
last_tokens = []
|
748 |
+
all_latents = []
|
749 |
+
wav_gen_prev = None
|
750 |
+
wav_overlap = None
|
751 |
+
is_end = False
|
752 |
+
|
753 |
+
while not is_end:
|
754 |
+
try:
|
755 |
+
x, latent = next(gpt_generator)
|
756 |
+
last_tokens += [x]
|
757 |
+
all_latents += [latent]
|
758 |
+
except StopIteration:
|
759 |
+
is_end = True
|
760 |
+
|
761 |
+
if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size):
|
762 |
+
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
|
763 |
+
if decoder == "hifigan":
|
764 |
+
assert hasattr(self, "hifigan_decoder"), "You must enable hifigan decoder to use it by setting config `use_hifigan: true`"
|
765 |
+
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
|
766 |
+
elif decoder == "ne_hifigan":
|
767 |
+
assert hasattr(self, "ne_hifigan_decoder"), "You must enable ne_hifigan decoder to use it by setting config `use_ne_hifigan: true`"
|
768 |
+
wav_gen = self.ne_hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
|
769 |
+
else:
|
770 |
+
raise NotImplementedError("Diffusion for streaming inference not implemented.")
|
771 |
+
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
|
772 |
+
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
|
773 |
+
)
|
774 |
+
last_tokens = []
|
775 |
+
yield wav_chunk
|
776 |
+
|
777 |
def forward(self):
|
778 |
raise NotImplementedError("XTTS Training is not implemented")
|
779 |
|
|
|
790 |
super().eval()
|
791 |
|
792 |
def load_checkpoint(
|
793 |
+
self,
|
794 |
+
config,
|
795 |
+
checkpoint_dir=None,
|
796 |
+
checkpoint_path=None,
|
797 |
+
vocab_path=None,
|
798 |
+
eval=True,
|
799 |
+
strict=True,
|
800 |
+
use_deepspeed=False,
|
801 |
):
|
802 |
"""
|
803 |
Loads a checkpoint from disk and initializes the model's state and tokenizer.
|
|
|
807 |
checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None.
|
808 |
checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None.
|
809 |
vocab_path (str, optional): The path to the vocabulary file. Defaults to None.
|
810 |
+
eval (bool, optional): Whether to set the model to evaluation mode. Defaults to True.
|
811 |
strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True.
|
812 |
|
813 |
Returns:
|
|
|
817 |
model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth")
|
818 |
vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json")
|
819 |
|
820 |
+
if os.path.exists(vocab_path):
|
821 |
+
self.tokenizer = VoiceBpeTokenizer(vocab_file=vocab_path)
|
822 |
|
823 |
self.init_models()
|
824 |
+
|
825 |
+
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
|
826 |
+
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
|
827 |
+
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
|
828 |
+
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
|
829 |
+
for key in list(checkpoint.keys()):
|
830 |
+
if key.split(".")[0] in ignore_keys:
|
831 |
+
del checkpoint[key]
|
832 |
+
|
833 |
+
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
|
834 |
+
try:
|
835 |
+
self.load_state_dict(checkpoint, strict=strict)
|
836 |
+
except:
|
837 |
+
if eval:
|
838 |
+
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache)
|
839 |
+
self.load_state_dict(checkpoint, strict=strict)
|
840 |
|
841 |
if eval:
|
842 |
+
if hasattr(self, "hifigan_decoder"): self.hifigan_decoder.eval()
|
843 |
+
if hasattr(self, "ne_hifigan_decoder"): self.hifigan_decoder.eval()
|
844 |
+
if hasattr(self, "diffusion_decoder"): self.diffusion_decoder.eval()
|
845 |
+
if hasattr(self, "vocoder"): self.vocoder.eval()
|
846 |
+
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed)
|
847 |
self.gpt.eval()
|
|
|
|
|
848 |
|
849 |
def train_step(self):
|
850 |
raise NotImplementedError("XTTS Training is not implemented")
|
TTS/TTS/utils/audio/numpy_transforms.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from typing import Tuple
|
2 |
|
3 |
import librosa
|
@@ -427,16 +428,24 @@ def load_wav(*, filename: str, sample_rate: int = None, resample: bool = False,
|
|
427 |
return x
|
428 |
|
429 |
|
430 |
-
def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, **kwargs) -> None:
|
431 |
"""Save float waveform to a file using Scipy.
|
432 |
|
433 |
Args:
|
434 |
wav (np.ndarray): Waveform with float values in range [-1, 1] to save.
|
435 |
path (str): Path to a output file.
|
436 |
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
|
|
|
437 |
"""
|
438 |
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
|
441 |
|
442 |
def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray:
|
|
|
1 |
+
from io import BytesIO
|
2 |
from typing import Tuple
|
3 |
|
4 |
import librosa
|
|
|
428 |
return x
|
429 |
|
430 |
|
431 |
+
def save_wav(*, wav: np.ndarray, path: str, sample_rate: int = None, pipe_out = None, **kwargs) -> None:
|
432 |
"""Save float waveform to a file using Scipy.
|
433 |
|
434 |
Args:
|
435 |
wav (np.ndarray): Waveform with float values in range [-1, 1] to save.
|
436 |
path (str): Path to a output file.
|
437 |
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
|
438 |
+
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
|
439 |
"""
|
440 |
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
441 |
+
|
442 |
+
wav_norm = wav_norm.astype(np.int16)
|
443 |
+
if pipe_out:
|
444 |
+
wav_buffer = BytesIO()
|
445 |
+
scipy.io.wavfile.write(wav_buffer, sample_rate, wav_norm)
|
446 |
+
wav_buffer.seek(0)
|
447 |
+
pipe_out.buffer.write(wav_buffer.read())
|
448 |
+
scipy.io.wavfile.write(path, sample_rate, wav_norm)
|
449 |
|
450 |
|
451 |
def mulaw_encode(*, wav: np.ndarray, mulaw_qc: int, **kwargs) -> np.ndarray:
|
TTS/TTS/utils/audio/processor.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from typing import Dict, Tuple
|
2 |
|
3 |
import librosa
|
@@ -693,20 +694,27 @@ class AudioProcessor(object):
|
|
693 |
x = self.rms_volume_norm(x, self.db_level)
|
694 |
return x
|
695 |
|
696 |
-
def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None:
|
697 |
"""Save a waveform to a file using Scipy.
|
698 |
|
699 |
Args:
|
700 |
wav (np.ndarray): Waveform to save.
|
701 |
path (str): Path to a output file.
|
702 |
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
|
|
|
703 |
"""
|
704 |
if self.do_rms_norm:
|
705 |
wav_norm = self.rms_volume_norm(wav, self.db_level) * 32767
|
706 |
else:
|
707 |
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
708 |
|
709 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
710 |
|
711 |
def get_duration(self, filename: str) -> float:
|
712 |
"""Get the duration of a wav file using Librosa.
|
|
|
1 |
+
from io import BytesIO
|
2 |
from typing import Dict, Tuple
|
3 |
|
4 |
import librosa
|
|
|
694 |
x = self.rms_volume_norm(x, self.db_level)
|
695 |
return x
|
696 |
|
697 |
+
def save_wav(self, wav: np.ndarray, path: str, sr: int = None, pipe_out = None) -> None:
|
698 |
"""Save a waveform to a file using Scipy.
|
699 |
|
700 |
Args:
|
701 |
wav (np.ndarray): Waveform to save.
|
702 |
path (str): Path to a output file.
|
703 |
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
|
704 |
+
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
|
705 |
"""
|
706 |
if self.do_rms_norm:
|
707 |
wav_norm = self.rms_volume_norm(wav, self.db_level) * 32767
|
708 |
else:
|
709 |
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
710 |
|
711 |
+
wav_norm = wav_norm.astype(np.int16)
|
712 |
+
if pipe_out:
|
713 |
+
wav_buffer = BytesIO()
|
714 |
+
scipy.io.wavfile.write(wav_buffer, sr if sr else self.sample_rate, wav_norm)
|
715 |
+
wav_buffer.seek(0)
|
716 |
+
pipe_out.buffer.write(wav_buffer.read())
|
717 |
+
scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm)
|
718 |
|
719 |
def get_duration(self, filename: str) -> float:
|
720 |
"""Get the duration of a wav file using Librosa.
|
TTS/TTS/utils/manage.py
CHANGED
@@ -6,6 +6,7 @@ from pathlib import Path
|
|
6 |
from shutil import copyfile, rmtree
|
7 |
from typing import Dict, List, Tuple
|
8 |
|
|
|
9 |
import requests
|
10 |
from tqdm import tqdm
|
11 |
|
@@ -293,8 +294,9 @@ class ModelManager(object):
|
|
293 |
# get model from models.json
|
294 |
model_item = self.models_dict[model_type][lang][dataset][model]
|
295 |
model_item["model_type"] = model_type
|
|
|
296 |
model_item = self.set_model_url(model_item)
|
297 |
-
return model_item, model_full_name, model
|
298 |
|
299 |
def ask_tos(self, model_full_path):
|
300 |
"""Ask the user to agree to the terms of service"""
|
@@ -320,6 +322,44 @@ class ModelManager(object):
|
|
320 |
return False
|
321 |
return True
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
def download_model(self, model_name):
|
324 |
"""Download model files given the full model name.
|
325 |
Model name is in the format
|
@@ -334,37 +374,39 @@ class ModelManager(object):
|
|
334 |
Args:
|
335 |
model_name (str): model name as explained above.
|
336 |
"""
|
337 |
-
model_item, model_full_name, model = self._set_model_item(model_name)
|
338 |
# set the model specific output path
|
339 |
output_path = os.path.join(self.output_prefix, model_full_name)
|
340 |
if os.path.exists(output_path):
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
else:
|
343 |
-
|
344 |
-
|
345 |
-
if not self.tos_agreed(model_item, output_path):
|
346 |
-
if not self.ask_tos(output_path):
|
347 |
-
os.rmdir(output_path)
|
348 |
-
raise Exception(" [!] You must agree to the terms of service to use this model.")
|
349 |
-
print(f" > Downloading model to {output_path}")
|
350 |
-
try:
|
351 |
-
if "fairseq" in model_name:
|
352 |
-
self.download_fairseq_model(model_name, output_path)
|
353 |
-
elif "github_rls_url" in model_item:
|
354 |
-
self._download_github_model(model_item, output_path)
|
355 |
-
elif "hf_url" in model_item:
|
356 |
-
self._download_hf_model(model_item, output_path)
|
357 |
-
|
358 |
-
except requests.RequestException as e:
|
359 |
-
print(f" > Failed to download the model file to {output_path}")
|
360 |
-
rmtree(output_path)
|
361 |
-
raise e
|
362 |
-
self.print_model_license(model_item=model_item)
|
363 |
# find downloaded files
|
364 |
output_model_path = output_path
|
365 |
output_config_path = None
|
366 |
if (
|
367 |
-
model not in ["tortoise-v2", "bark", "xtts_v1"] and "fairseq" not in model_name
|
368 |
): # TODO:This is stupid but don't care for now.
|
369 |
output_model_path, output_config_path = self._find_files(output_path)
|
370 |
# update paths in the config.json
|
|
|
6 |
from shutil import copyfile, rmtree
|
7 |
from typing import Dict, List, Tuple
|
8 |
|
9 |
+
import fsspec
|
10 |
import requests
|
11 |
from tqdm import tqdm
|
12 |
|
|
|
294 |
# get model from models.json
|
295 |
model_item = self.models_dict[model_type][lang][dataset][model]
|
296 |
model_item["model_type"] = model_type
|
297 |
+
md5hash = model_item["model_hash"] if "model_hash" in model_item else None
|
298 |
model_item = self.set_model_url(model_item)
|
299 |
+
return model_item, model_full_name, model, md5hash
|
300 |
|
301 |
def ask_tos(self, model_full_path):
|
302 |
"""Ask the user to agree to the terms of service"""
|
|
|
322 |
return False
|
323 |
return True
|
324 |
|
325 |
+
def create_dir_and_download_model(self, model_name, model_item, output_path):
|
326 |
+
os.makedirs(output_path, exist_ok=True)
|
327 |
+
# handle TOS
|
328 |
+
if not self.tos_agreed(model_item, output_path):
|
329 |
+
if not self.ask_tos(output_path):
|
330 |
+
os.rmdir(output_path)
|
331 |
+
raise Exception(" [!] You must agree to the terms of service to use this model.")
|
332 |
+
print(f" > Downloading model to {output_path}")
|
333 |
+
try:
|
334 |
+
if "fairseq" in model_name:
|
335 |
+
self.download_fairseq_model(model_name, output_path)
|
336 |
+
elif "github_rls_url" in model_item:
|
337 |
+
self._download_github_model(model_item, output_path)
|
338 |
+
elif "hf_url" in model_item:
|
339 |
+
self._download_hf_model(model_item, output_path)
|
340 |
+
|
341 |
+
except requests.RequestException as e:
|
342 |
+
print(f" > Failed to download the model file to {output_path}")
|
343 |
+
rmtree(output_path)
|
344 |
+
raise e
|
345 |
+
self.print_model_license(model_item=model_item)
|
346 |
+
|
347 |
+
def check_if_configs_are_equal(self, model_name, model_item, output_path):
|
348 |
+
with fsspec.open(self._find_files(output_path)[1], "r", encoding="utf-8") as f:
|
349 |
+
config_local = json.load(f)
|
350 |
+
remote_url = None
|
351 |
+
for url in model_item["hf_url"]:
|
352 |
+
if "config.json" in url:
|
353 |
+
remote_url = url
|
354 |
+
break
|
355 |
+
|
356 |
+
with fsspec.open(remote_url, "r", encoding="utf-8") as f:
|
357 |
+
config_remote = json.load(f)
|
358 |
+
|
359 |
+
if not config_local == config_remote:
|
360 |
+
print(f" > {model_name} is already downloaded however it has been changed. Redownloading it...")
|
361 |
+
self.create_dir_and_download_model(model_name, model_item, output_path)
|
362 |
+
|
363 |
def download_model(self, model_name):
|
364 |
"""Download model files given the full model name.
|
365 |
Model name is in the format
|
|
|
374 |
Args:
|
375 |
model_name (str): model name as explained above.
|
376 |
"""
|
377 |
+
model_item, model_full_name, model, md5sum = self._set_model_item(model_name)
|
378 |
# set the model specific output path
|
379 |
output_path = os.path.join(self.output_prefix, model_full_name)
|
380 |
if os.path.exists(output_path):
|
381 |
+
if md5sum is not None:
|
382 |
+
md5sum_file = os.path.join(output_path, "hash.md5")
|
383 |
+
if os.path.isfile(md5sum_file):
|
384 |
+
with open(md5sum_file, mode="r") as f:
|
385 |
+
if not f.read() == md5sum:
|
386 |
+
print(f" > {model_name} has been updated, clearing model cache...")
|
387 |
+
self.create_dir_and_download_model(model_name, model_item, output_path)
|
388 |
+
else:
|
389 |
+
print(f" > {model_name} is already downloaded.")
|
390 |
+
else:
|
391 |
+
print(f" > {model_name} has been updated, clearing model cache...")
|
392 |
+
self.create_dir_and_download_model(model_name, model_item, output_path)
|
393 |
+
# if the configs are different, redownload it
|
394 |
+
# ToDo: we need a better way to handle it
|
395 |
+
if "xtts_v1" in model_name:
|
396 |
+
try:
|
397 |
+
self.check_if_configs_are_equal(model_name, model_item, output_path)
|
398 |
+
except:
|
399 |
+
pass
|
400 |
+
else:
|
401 |
+
print(f" > {model_name} is already downloaded.")
|
402 |
else:
|
403 |
+
self.create_dir_and_download_model(model_name, model_item, output_path)
|
404 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
# find downloaded files
|
406 |
output_model_path = output_path
|
407 |
output_config_path = None
|
408 |
if (
|
409 |
+
model not in ["tortoise-v2", "bark", "xtts_v1", "xtts_v1.1"] and "fairseq" not in model_name
|
410 |
): # TODO:This is stupid but don't care for now.
|
411 |
output_model_path, output_config_path = self._find_files(output_path)
|
412 |
# update paths in the config.json
|
TTS/TTS/utils/synthesizer.py
CHANGED
@@ -235,19 +235,20 @@ class Synthesizer(nn.Module):
|
|
235 |
"""
|
236 |
return self.seg.segment(text)
|
237 |
|
238 |
-
def save_wav(self, wav: List[int], path: str) -> None:
|
239 |
"""Save the waveform as a file.
|
240 |
|
241 |
Args:
|
242 |
wav (List[int]): waveform as a list of values.
|
243 |
path (str): output path to save the waveform.
|
|
|
244 |
"""
|
245 |
# if tensor convert to numpy
|
246 |
if torch.is_tensor(wav):
|
247 |
wav = wav.cpu().numpy()
|
248 |
if isinstance(wav, list):
|
249 |
wav = np.array(wav)
|
250 |
-
save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate)
|
251 |
|
252 |
def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]:
|
253 |
output_wav = self.vc_model.voice_conversion(source_wav, target_wav)
|
@@ -299,11 +300,7 @@ class Synthesizer(nn.Module):
|
|
299 |
speaker_embedding = None
|
300 |
speaker_id = None
|
301 |
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
|
302 |
-
|
303 |
-
if len(self.tts_model.speaker_manager.name_to_id) == 1:
|
304 |
-
speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0]
|
305 |
-
|
306 |
-
elif speaker_name and isinstance(speaker_name, str):
|
307 |
if self.tts_config.use_d_vector_file:
|
308 |
# get the average speaker embedding from the saved d_vectors.
|
309 |
speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding(
|
@@ -313,7 +310,9 @@ class Synthesizer(nn.Module):
|
|
313 |
else:
|
314 |
# get speaker idx from the speaker name
|
315 |
speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name]
|
316 |
-
|
|
|
|
|
317 |
elif not speaker_name and not speaker_wav:
|
318 |
raise ValueError(
|
319 |
" [!] Looks like you are using a multi-speaker model. "
|
|
|
235 |
"""
|
236 |
return self.seg.segment(text)
|
237 |
|
238 |
+
def save_wav(self, wav: List[int], path: str, pipe_out = None) -> None:
|
239 |
"""Save the waveform as a file.
|
240 |
|
241 |
Args:
|
242 |
wav (List[int]): waveform as a list of values.
|
243 |
path (str): output path to save the waveform.
|
244 |
+
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
|
245 |
"""
|
246 |
# if tensor convert to numpy
|
247 |
if torch.is_tensor(wav):
|
248 |
wav = wav.cpu().numpy()
|
249 |
if isinstance(wav, list):
|
250 |
wav = np.array(wav)
|
251 |
+
save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate, pipe_out=pipe_out)
|
252 |
|
253 |
def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]:
|
254 |
output_wav = self.vc_model.voice_conversion(source_wav, target_wav)
|
|
|
300 |
speaker_embedding = None
|
301 |
speaker_id = None
|
302 |
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
|
303 |
+
if speaker_name and isinstance(speaker_name, str):
|
|
|
|
|
|
|
|
|
304 |
if self.tts_config.use_d_vector_file:
|
305 |
# get the average speaker embedding from the saved d_vectors.
|
306 |
speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding(
|
|
|
310 |
else:
|
311 |
# get speaker idx from the speaker name
|
312 |
speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name]
|
313 |
+
# handle Neon models with single speaker.
|
314 |
+
elif len(self.tts_model.speaker_manager.name_to_id) == 1:
|
315 |
+
speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0]
|
316 |
elif not speaker_name and not speaker_wav:
|
317 |
raise ValueError(
|
318 |
" [!] Looks like you are using a multi-speaker model. "
|
TTS/docs/source/formatting_your_dataset.md
CHANGED
@@ -17,19 +17,20 @@ Let's assume you created the audio clips and their transcription. You can collec
|
|
17 |
...
|
18 |
```
|
19 |
|
20 |
-
You can either create separate transcription files for each clip or create a text file that maps each audio clip to its transcription. In this file, each
|
21 |
|
22 |
We recommend the following format delimited by `|`. In the following example, `audio1`, `audio2` refer to files `audio1.wav`, `audio2.wav` etc.
|
23 |
|
24 |
```
|
25 |
# metadata.txt
|
26 |
|
27 |
-
audio1|This is my sentence.
|
28 |
-
audio2|
|
29 |
-
audio3|
|
30 |
-
audio4|Let this be your sentence.
|
31 |
...
|
32 |
```
|
|
|
|
|
33 |
|
34 |
In the end, we have the following folder structure
|
35 |
```
|
|
|
17 |
...
|
18 |
```
|
19 |
|
20 |
+
You can either create separate transcription files for each clip or create a text file that maps each audio clip to its transcription. In this file, each column must be delimitered by a special character separating the audio file name, the transcription and the normalized transcription. And make sure that the delimiter is not used in the transcription text.
|
21 |
|
22 |
We recommend the following format delimited by `|`. In the following example, `audio1`, `audio2` refer to files `audio1.wav`, `audio2.wav` etc.
|
23 |
|
24 |
```
|
25 |
# metadata.txt
|
26 |
|
27 |
+
audio1|This is my sentence.|This is my sentence.
|
28 |
+
audio2|1469 and 1470|fourteen sixty-nine and fourteen seventy
|
29 |
+
audio3|It'll be $16 sir.|It'll be sixteen dollars sir.
|
|
|
30 |
...
|
31 |
```
|
32 |
+
*If you don't have normalized transcriptions, you can use the same transcription for both columns. If it's your case, we recommend to use normalization later in the pipeline, either in the text cleaner or in the phonemizer.*
|
33 |
+
|
34 |
|
35 |
In the end, we have the following folder structure
|
36 |
```
|
TTS/docs/source/implementing_a_new_model.md
CHANGED
@@ -41,7 +41,7 @@
|
|
41 |
6. Optionally, define `MyModelArgs`.
|
42 |
|
43 |
`MyModelArgs` is a 👨✈️Coqpit class that sets all the class arguments of the `MyModel`. `MyModelArgs` must have
|
44 |
-
all the fields
|
45 |
the model.
|
46 |
|
47 |
7. Test `MyModel`.
|
|
|
41 |
6. Optionally, define `MyModelArgs`.
|
42 |
|
43 |
`MyModelArgs` is a 👨✈️Coqpit class that sets all the class arguments of the `MyModel`. `MyModelArgs` must have
|
44 |
+
all the fields necessary to instantiate the `MyModel`. However, for training, you need to pass `MyModelConfig` to
|
45 |
the model.
|
46 |
|
47 |
7. Test `MyModel`.
|
TTS/docs/source/inference.md
CHANGED
@@ -114,18 +114,24 @@ tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
|
114 |
You can run a multi-speaker and multi-lingual model in Python as
|
115 |
|
116 |
```python
|
|
|
117 |
from TTS.api import TTS
|
118 |
|
119 |
-
#
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
# Init TTS
|
122 |
-
tts = TTS(
|
|
|
123 |
# Run TTS
|
124 |
-
# ❗ Since this model is multi-
|
125 |
-
# Text to speech
|
126 |
-
wav = tts.tts("
|
127 |
# Text to speech to a file
|
128 |
-
tts.tts_to_file(text="Hello world!",
|
129 |
```
|
130 |
|
131 |
#### Here is an example for a single speaker model.
|
|
|
114 |
You can run a multi-speaker and multi-lingual model in Python as
|
115 |
|
116 |
```python
|
117 |
+
import torch
|
118 |
from TTS.api import TTS
|
119 |
|
120 |
+
# Get device
|
121 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
122 |
+
|
123 |
+
# List available 🐸TTS models
|
124 |
+
print(TTS().list_models())
|
125 |
+
|
126 |
# Init TTS
|
127 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1").to(device)
|
128 |
+
|
129 |
# Run TTS
|
130 |
+
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
|
131 |
+
# Text to speech list of amplitude values as output
|
132 |
+
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
|
133 |
# Text to speech to a file
|
134 |
+
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
135 |
```
|
136 |
|
137 |
#### Here is an example for a single speaker model.
|
TTS/docs/source/main_classes/trainer_api.md
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
# Trainer API
|
2 |
|
3 |
-
We made the trainer a
|
|
|
1 |
# Trainer API
|
2 |
|
3 |
+
We made the trainer a separate project on https://github.com/coqui-ai/Trainer
|
TTS/docs/source/models/forward_tts.md
CHANGED
@@ -12,7 +12,7 @@ Currently we provide the following pre-configured architectures:
|
|
12 |
|
13 |
- **FastPitch:**
|
14 |
|
15 |
-
It uses the same FastSpeech architecture that is conditioned on
|
16 |
promise of more expressive speech.
|
17 |
|
18 |
- **SpeedySpeech:**
|
|
|
12 |
|
13 |
- **FastPitch:**
|
14 |
|
15 |
+
It uses the same FastSpeech architecture that is conditioned on fundamental frequency (f0) contours with the
|
16 |
promise of more expressive speech.
|
17 |
|
18 |
- **SpeedySpeech:**
|
TTS/docs/source/models/xtts.md
CHANGED
@@ -28,7 +28,8 @@ This model is licensed under [Coqui Public Model License](https://coqui.ai/cpml)
|
|
28 |
Come and join in our 🐸Community. We're active on [Discord](https://discord.gg/fBC58unbKE) and [Twitter](https://twitter.com/coqui_ai).
|
29 |
You can also mail us at info@coqui.ai.
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
```python
|
34 |
from TTS.api import TTS
|
@@ -39,16 +40,9 @@ tts.tts_to_file(text="It took me quite a long time to develop a voice, and now t
|
|
39 |
file_path="output.wav",
|
40 |
speaker_wav="/path/to/target/speaker.wav",
|
41 |
language="en")
|
42 |
-
|
43 |
-
# generate speech by cloning a voice using custom settings
|
44 |
-
tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
45 |
-
file_path="output.wav",
|
46 |
-
speaker_wav="/path/to/target/speaker.wav",
|
47 |
-
language="en",
|
48 |
-
decoder_iterations=30)
|
49 |
```
|
50 |
|
51 |
-
|
52 |
|
53 |
```console
|
54 |
tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 \
|
@@ -58,25 +52,85 @@ Using 🐸TTS Command line:
|
|
58 |
--use_cuda true
|
59 |
```
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
```python
|
|
|
|
|
|
|
|
|
64 |
from TTS.tts.configs.xtts_config import XttsConfig
|
65 |
from TTS.tts.models.xtts import Xtts
|
66 |
|
|
|
67 |
config = XttsConfig()
|
68 |
config.load_json("/path/to/xtts/config.json")
|
69 |
model = Xtts.init_from_config(config)
|
70 |
-
model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/",
|
71 |
model.cuda()
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.",
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
language="en",
|
79 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
```
|
81 |
|
82 |
|
|
|
28 |
Come and join in our 🐸Community. We're active on [Discord](https://discord.gg/fBC58unbKE) and [Twitter](https://twitter.com/coqui_ai).
|
29 |
You can also mail us at info@coqui.ai.
|
30 |
|
31 |
+
### Inference
|
32 |
+
#### 🐸TTS API
|
33 |
|
34 |
```python
|
35 |
from TTS.api import TTS
|
|
|
40 |
file_path="output.wav",
|
41 |
speaker_wav="/path/to/target/speaker.wav",
|
42 |
language="en")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
|
45 |
+
#### 🐸TTS Command line
|
46 |
|
47 |
```console
|
48 |
tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 \
|
|
|
52 |
--use_cuda true
|
53 |
```
|
54 |
|
55 |
+
#### model directly
|
56 |
+
|
57 |
+
If you want to be able to run with `use_deepspeed=True` and enjoy the speedup, you need to install deepspeed first.
|
58 |
+
|
59 |
+
```console
|
60 |
+
pip install deepspeed==0.8.3
|
61 |
+
```
|
62 |
+
|
63 |
+
```python
|
64 |
+
import os
|
65 |
+
import torch
|
66 |
+
import torchaudio
|
67 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
68 |
+
from TTS.tts.models.xtts import Xtts
|
69 |
+
|
70 |
+
print("Loading model...")
|
71 |
+
config = XttsConfig()
|
72 |
+
config.load_json("/path/to/xtts/config.json")
|
73 |
+
model = Xtts.init_from_config(config)
|
74 |
+
model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=True)
|
75 |
+
model.cuda()
|
76 |
+
|
77 |
+
print("Computing speaker latents...")
|
78 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav")
|
79 |
+
|
80 |
+
print("Inference...")
|
81 |
+
out = model.inference(
|
82 |
+
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.",
|
83 |
+
"en",
|
84 |
+
gpt_cond_latent,
|
85 |
+
speaker_embedding,
|
86 |
+
diffusion_conditioning,
|
87 |
+
temperature=0.7, # Add custom parameters here
|
88 |
+
)
|
89 |
+
torchaudio.save("xtts.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
90 |
+
```
|
91 |
+
|
92 |
+
|
93 |
+
#### streaming inference
|
94 |
+
|
95 |
+
Here the goal is to stream the audio as it is being generated. This is useful for real-time applications.
|
96 |
+
Streaming inference is typically slower than regular inference, but it allows to get a first chunk of audio faster.
|
97 |
+
|
98 |
|
99 |
```python
|
100 |
+
import os
|
101 |
+
import time
|
102 |
+
import torch
|
103 |
+
import torchaudio
|
104 |
from TTS.tts.configs.xtts_config import XttsConfig
|
105 |
from TTS.tts.models.xtts import Xtts
|
106 |
|
107 |
+
print("Loading model...")
|
108 |
config = XttsConfig()
|
109 |
config.load_json("/path/to/xtts/config.json")
|
110 |
model = Xtts.init_from_config(config)
|
111 |
+
model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=True)
|
112 |
model.cuda()
|
113 |
|
114 |
+
print("Computing speaker latents...")
|
115 |
+
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav")
|
116 |
+
|
117 |
+
print("Inference...")
|
118 |
+
t0 = time.time()
|
119 |
+
chunks = model.inference_stream(
|
120 |
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.",
|
121 |
+
"en",
|
122 |
+
gpt_cond_latent,
|
123 |
+
speaker_embedding
|
|
|
124 |
)
|
125 |
+
|
126 |
+
wav_chuncks = []
|
127 |
+
for i, chunk in enumerate(chunks):
|
128 |
+
if i == 0:
|
129 |
+
print(f"Time to first chunck: {time.time() - t0}")
|
130 |
+
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
131 |
+
wav_chuncks.append(chunk)
|
132 |
+
wav = torch.cat(wav_chuncks, dim=0)
|
133 |
+
torchaudio.save("xtts_streaming.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
134 |
```
|
135 |
|
136 |
|
TTS/notebooks/ExtractTTSpectrogram.ipynb
CHANGED
@@ -13,15 +13,15 @@
|
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
16 |
-
"%load_ext autoreload\n",
|
17 |
-
"%autoreload 2\n",
|
18 |
"import os\n",
|
19 |
"import sys\n",
|
20 |
"import torch\n",
|
21 |
"import importlib\n",
|
22 |
"import numpy as np\n",
|
23 |
-
"from tqdm import tqdm
|
24 |
"from torch.utils.data import DataLoader\n",
|
|
|
|
|
25 |
"from TTS.tts.datasets.dataset import TTSDataset\n",
|
26 |
"from TTS.tts.layers.losses import L1LossMasked\n",
|
27 |
"from TTS.utils.audio import AudioProcessor\n",
|
@@ -33,8 +33,8 @@
|
|
33 |
"\n",
|
34 |
"%matplotlib inline\n",
|
35 |
"\n",
|
36 |
-
"
|
37 |
-
"os.environ['CUDA_VISIBLE_DEVICES']='2'"
|
38 |
]
|
39 |
},
|
40 |
{
|
@@ -43,6 +43,7 @@
|
|
43 |
"metadata": {},
|
44 |
"outputs": [],
|
45 |
"source": [
|
|
|
46 |
"def set_filename(wav_path, out_path):\n",
|
47 |
" wav_file = os.path.basename(wav_path)\n",
|
48 |
" file_name = wav_file.split('.')[0]\n",
|
@@ -61,6 +62,7 @@
|
|
61 |
"metadata": {},
|
62 |
"outputs": [],
|
63 |
"source": [
|
|
|
64 |
"OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n",
|
65 |
"DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n",
|
66 |
"DATASET = \"ljspeech\"\n",
|
@@ -73,12 +75,15 @@
|
|
73 |
"QUANTIZE_BIT = None\n",
|
74 |
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
|
75 |
"\n",
|
|
|
76 |
"use_cuda = torch.cuda.is_available()\n",
|
77 |
"print(\" > CUDA enabled: \", use_cuda)\n",
|
78 |
"\n",
|
|
|
79 |
"C = load_config(CONFIG_PATH)\n",
|
80 |
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n",
|
81 |
-
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)"
|
|
|
82 |
]
|
83 |
},
|
84 |
{
|
@@ -87,14 +92,13 @@
|
|
87 |
"metadata": {},
|
88 |
"outputs": [],
|
89 |
"source": [
|
90 |
-
"
|
91 |
-
"# if the vocabulary was passed, replace the default\n",
|
92 |
"if 'characters' in C and C['characters']:\n",
|
93 |
" symbols, phonemes = make_symbols(**C.characters)\n",
|
94 |
"\n",
|
95 |
-
"#
|
96 |
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
|
97 |
-
"# TODO: multiple
|
98 |
"model = setup_model(C)\n",
|
99 |
"model.load_checkpoint(C, MODEL_FILE, eval=True)"
|
100 |
]
|
@@ -105,11 +109,12 @@
|
|
105 |
"metadata": {},
|
106 |
"outputs": [],
|
107 |
"source": [
|
|
|
108 |
"preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n",
|
109 |
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
|
110 |
"meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n",
|
111 |
"dataset = TTSDataset(\n",
|
112 |
-
"
|
113 |
" C.text_cleaner,\n",
|
114 |
" False,\n",
|
115 |
" ap,\n",
|
@@ -124,6 +129,24 @@
|
|
124 |
")\n"
|
125 |
]
|
126 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
{
|
128 |
"cell_type": "markdown",
|
129 |
"metadata": {},
|
@@ -137,83 +160,85 @@
|
|
137 |
"metadata": {},
|
138 |
"outputs": [],
|
139 |
"source": [
|
140 |
-
"
|
141 |
-
"\n",
|
142 |
-
"file_idxs = []\n",
|
143 |
-
"metadata = []\n",
|
144 |
-
"losses = []\n",
|
145 |
-
"postnet_losses = []\n",
|
146 |
-
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
|
147 |
"with torch.no_grad():\n",
|
148 |
-
" for data in tqdm(loader):\n",
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
-
" linear_input = data[3]\n",
|
153 |
-
" mel_input = data[4]\n",
|
154 |
-
" mel_lengths = data[5]\n",
|
155 |
-
" stop_targets = data[6]\n",
|
156 |
-
" item_idx = data[7]\n",
|
157 |
"\n",
|
158 |
-
"
|
159 |
-
"
|
160 |
-
"
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
164 |
"\n",
|
165 |
-
"
|
166 |
-
"
|
167 |
-
" \n",
|
168 |
-
" # compute loss\n",
|
169 |
-
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
|
170 |
-
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
|
171 |
-
" losses.append(loss.item())\n",
|
172 |
-
" postnet_losses.append(loss_postnet.item())\n",
|
173 |
"\n",
|
174 |
-
"
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
178 |
-
"
|
179 |
-
" postnet_output = postnet_outputs[b]\n",
|
180 |
-
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
|
181 |
-
" postnet_outputs = torch.stack(mel_specs)\n",
|
182 |
-
" elif C.model == \"Tacotron2\":\n",
|
183 |
-
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
|
184 |
-
" alignments = alignments.detach().cpu().numpy()\n",
|
185 |
"\n",
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
191 |
-
"
|
|
|
|
|
|
|
|
|
|
|
192 |
"\n",
|
193 |
-
"
|
194 |
-
"
|
195 |
-
"
|
196 |
-
"
|
|
|
|
|
197 |
"\n",
|
198 |
-
"
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"
|
202 |
-
" np.save(mel_path, mel)\n",
|
203 |
"\n",
|
204 |
-
"
|
|
|
|
|
|
|
|
|
205 |
"\n",
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
"
|
213 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"\n",
|
215 |
-
"
|
216 |
-
"
|
|
|
217 |
]
|
218 |
},
|
219 |
{
|
|
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
|
|
|
|
16 |
"import os\n",
|
17 |
"import sys\n",
|
18 |
"import torch\n",
|
19 |
"import importlib\n",
|
20 |
"import numpy as np\n",
|
21 |
+
"from tqdm import tqdm\n",
|
22 |
"from torch.utils.data import DataLoader\n",
|
23 |
+
"import soundfile as sf\n",
|
24 |
+
"import pickle\n",
|
25 |
"from TTS.tts.datasets.dataset import TTSDataset\n",
|
26 |
"from TTS.tts.layers.losses import L1LossMasked\n",
|
27 |
"from TTS.utils.audio import AudioProcessor\n",
|
|
|
33 |
"\n",
|
34 |
"%matplotlib inline\n",
|
35 |
"\n",
|
36 |
+
"# Configure CUDA visibility\n",
|
37 |
+
"os.environ['CUDA_VISIBLE_DEVICES'] = '2'"
|
38 |
]
|
39 |
},
|
40 |
{
|
|
|
43 |
"metadata": {},
|
44 |
"outputs": [],
|
45 |
"source": [
|
46 |
+
"# Function to create directories and file names\n",
|
47 |
"def set_filename(wav_path, out_path):\n",
|
48 |
" wav_file = os.path.basename(wav_path)\n",
|
49 |
" file_name = wav_file.split('.')[0]\n",
|
|
|
62 |
"metadata": {},
|
63 |
"outputs": [],
|
64 |
"source": [
|
65 |
+
"# Paths and configurations\n",
|
66 |
"OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n",
|
67 |
"DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n",
|
68 |
"DATASET = \"ljspeech\"\n",
|
|
|
75 |
"QUANTIZE_BIT = None\n",
|
76 |
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
|
77 |
"\n",
|
78 |
+
"# Check CUDA availability\n",
|
79 |
"use_cuda = torch.cuda.is_available()\n",
|
80 |
"print(\" > CUDA enabled: \", use_cuda)\n",
|
81 |
"\n",
|
82 |
+
"# Load the configuration\n",
|
83 |
"C = load_config(CONFIG_PATH)\n",
|
84 |
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n",
|
85 |
+
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)\n",
|
86 |
+
"print(C['r'])"
|
87 |
]
|
88 |
},
|
89 |
{
|
|
|
92 |
"metadata": {},
|
93 |
"outputs": [],
|
94 |
"source": [
|
95 |
+
"# If the vocabulary was passed, replace the default\n",
|
|
|
96 |
"if 'characters' in C and C['characters']:\n",
|
97 |
" symbols, phonemes = make_symbols(**C.characters)\n",
|
98 |
"\n",
|
99 |
+
"# Load the model\n",
|
100 |
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
|
101 |
+
"# TODO: multiple speakers\n",
|
102 |
"model = setup_model(C)\n",
|
103 |
"model.load_checkpoint(C, MODEL_FILE, eval=True)"
|
104 |
]
|
|
|
109 |
"metadata": {},
|
110 |
"outputs": [],
|
111 |
"source": [
|
112 |
+
"# Load the preprocessor based on the dataset\n",
|
113 |
"preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n",
|
114 |
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
|
115 |
"meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n",
|
116 |
"dataset = TTSDataset(\n",
|
117 |
+
" C,\n",
|
118 |
" C.text_cleaner,\n",
|
119 |
" False,\n",
|
120 |
" ap,\n",
|
|
|
129 |
")\n"
|
130 |
]
|
131 |
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": null,
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [],
|
137 |
+
"source": [
|
138 |
+
"# Initialize lists for storing results\n",
|
139 |
+
"file_idxs = []\n",
|
140 |
+
"metadata = []\n",
|
141 |
+
"losses = []\n",
|
142 |
+
"postnet_losses = []\n",
|
143 |
+
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
|
144 |
+
"\n",
|
145 |
+
"# Create log file\n",
|
146 |
+
"log_file_path = os.path.join(OUT_PATH, \"log.txt\")\n",
|
147 |
+
"log_file = open(log_file_path, \"w\")"
|
148 |
+
]
|
149 |
+
},
|
150 |
{
|
151 |
"cell_type": "markdown",
|
152 |
"metadata": {},
|
|
|
160 |
"metadata": {},
|
161 |
"outputs": [],
|
162 |
"source": [
|
163 |
+
"# Start processing with a progress bar\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
"with torch.no_grad():\n",
|
165 |
+
" for data in tqdm(loader, desc=\"Processing\"):\n",
|
166 |
+
" try:\n",
|
167 |
+
" # setup input data\n",
|
168 |
+
" text_input, text_lengths, _, linear_input, mel_input, mel_lengths, stop_targets, item_idx = data\n",
|
|
|
|
|
|
|
|
|
|
|
169 |
"\n",
|
170 |
+
" # dispatch data to GPU\n",
|
171 |
+
" if use_cuda:\n",
|
172 |
+
" text_input = text_input.cuda()\n",
|
173 |
+
" text_lengths = text_lengths.cuda()\n",
|
174 |
+
" mel_input = mel_input.cuda()\n",
|
175 |
+
" mel_lengths = mel_lengths.cuda()\n",
|
176 |
"\n",
|
177 |
+
" mask = sequence_mask(text_lengths)\n",
|
178 |
+
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
"\n",
|
180 |
+
" # compute loss\n",
|
181 |
+
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
|
182 |
+
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
|
183 |
+
" losses.append(loss.item())\n",
|
184 |
+
" postnet_losses.append(loss_postnet.item())\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
"\n",
|
186 |
+
" # compute mel specs from linear spec if the model is Tacotron\n",
|
187 |
+
" if C.model == \"Tacotron\":\n",
|
188 |
+
" mel_specs = []\n",
|
189 |
+
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
|
190 |
+
" for b in range(postnet_outputs.shape[0]):\n",
|
191 |
+
" postnet_output = postnet_outputs[b]\n",
|
192 |
+
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
|
193 |
+
" postnet_outputs = torch.stack(mel_specs)\n",
|
194 |
+
" elif C.model == \"Tacotron2\":\n",
|
195 |
+
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
|
196 |
+
" alignments = alignments.detach().cpu().numpy()\n",
|
197 |
"\n",
|
198 |
+
" if not DRY_RUN:\n",
|
199 |
+
" for idx in range(text_input.shape[0]):\n",
|
200 |
+
" wav_file_path = item_idx[idx]\n",
|
201 |
+
" wav = ap.load_wav(wav_file_path)\n",
|
202 |
+
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
|
203 |
+
" file_idxs.append(file_name)\n",
|
204 |
"\n",
|
205 |
+
" # quantize and save wav\n",
|
206 |
+
" if QUANTIZED_WAV:\n",
|
207 |
+
" wavq = ap.quantize(wav)\n",
|
208 |
+
" np.save(wavq_path, wavq)\n",
|
|
|
209 |
"\n",
|
210 |
+
" # save TTS mel\n",
|
211 |
+
" mel = postnet_outputs[idx]\n",
|
212 |
+
" mel_length = mel_lengths[idx]\n",
|
213 |
+
" mel = mel[:mel_length, :].T\n",
|
214 |
+
" np.save(mel_path, mel)\n",
|
215 |
"\n",
|
216 |
+
" metadata.append([wav_file_path, mel_path])\n",
|
217 |
+
"\n",
|
218 |
+
" except Exception as e:\n",
|
219 |
+
" log_file.write(f\"Error processing data: {str(e)}\\n\")\n",
|
220 |
+
"\n",
|
221 |
+
" # Calculate and log mean losses\n",
|
222 |
+
" mean_loss = np.mean(losses)\n",
|
223 |
+
" mean_postnet_loss = np.mean(postnet_losses)\n",
|
224 |
+
" log_file.write(f\"Mean Loss: {mean_loss}\\n\")\n",
|
225 |
+
" log_file.write(f\"Mean Postnet Loss: {mean_postnet_loss}\\n\")\n",
|
226 |
+
"\n",
|
227 |
+
"# Close the log file\n",
|
228 |
+
"log_file.close()\n",
|
229 |
+
"\n",
|
230 |
+
"# For wavernn\n",
|
231 |
+
"if not DRY_RUN:\n",
|
232 |
+
" pickle.dump(file_idxs, open(os.path.join(OUT_PATH, \"dataset_ids.pkl\"), \"wb\"))\n",
|
233 |
+
"\n",
|
234 |
+
"# For pwgan\n",
|
235 |
+
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
|
236 |
+
" for data in metadata:\n",
|
237 |
+
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
|
238 |
"\n",
|
239 |
+
"# Print mean losses\n",
|
240 |
+
"print(f\"Mean Loss: {mean_loss}\")\n",
|
241 |
+
"print(f\"Mean Postnet Loss: {mean_postnet_loss}\")"
|
242 |
]
|
243 |
},
|
244 |
{
|
TTS/notebooks/dataset_analysis/AnalyzeDataset.ipynb
CHANGED
@@ -100,7 +100,7 @@
|
|
100 |
" wav_file = item[\"audio_file\"].strip()\n",
|
101 |
" wav_files.append(wav_file)\n",
|
102 |
" if not os.path.exists(wav_file):\n",
|
103 |
-
" print(
|
104 |
]
|
105 |
},
|
106 |
{
|
|
|
100 |
" wav_file = item[\"audio_file\"].strip()\n",
|
101 |
" wav_files.append(wav_file)\n",
|
102 |
" if not os.path.exists(wav_file):\n",
|
103 |
+
" print(wav_file)"
|
104 |
]
|
105 |
},
|
106 |
{
|
TTS/requirements.ja.txt
CHANGED
@@ -2,3 +2,4 @@
|
|
2 |
# japanese g2p deps
|
3 |
mecab-python3==1.0.6
|
4 |
unidic-lite==1.0.8
|
|
|
|
2 |
# japanese g2p deps
|
3 |
mecab-python3==1.0.6
|
4 |
unidic-lite==1.0.8
|
5 |
+
cutlet
|
TTS/tests/api_tests/test_synthesize_api.py
CHANGED
@@ -13,3 +13,16 @@ def test_synthesize():
|
|
13 |
'--text "This is it" '
|
14 |
f'--out_path "{output_path}"'
|
15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
'--text "This is it" '
|
14 |
f'--out_path "{output_path}"'
|
15 |
)
|
16 |
+
|
17 |
+
# 🐸 Coqui studio model with speed arg.
|
18 |
+
run_cli(
|
19 |
+
'tts --model_name "coqui_studio/en/Torcull Diarmuid/coqui_studio" '
|
20 |
+
'--text "This is it but slow" --speed 0.1'
|
21 |
+
f'--out_path "{output_path}"'
|
22 |
+
)
|
23 |
+
|
24 |
+
# test pipe_out command
|
25 |
+
run_cli(
|
26 |
+
'tts --text "test." --pipe_out '
|
27 |
+
f'--out_path "{output_path}" | aplay'
|
28 |
+
)
|
TTS/tests/zoo_tests/test_models.py
CHANGED
@@ -3,13 +3,20 @@ import glob
|
|
3 |
import os
|
4 |
import shutil
|
5 |
|
|
|
|
|
6 |
from tests import get_tests_data_path, get_tests_output_path, run_cli
|
7 |
from TTS.tts.utils.languages import LanguageManager
|
8 |
from TTS.tts.utils.speakers import SpeakerManager
|
9 |
from TTS.utils.generic_utils import get_user_data_dir
|
10 |
from TTS.utils.manage import ModelManager
|
11 |
|
12 |
-
MODELS_WITH_SEP_TESTS = [
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def run_models(offset=0, step=1):
|
@@ -17,7 +24,8 @@ def run_models(offset=0, step=1):
|
|
17 |
print(" > Run synthesizer with all the models.")
|
18 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
19 |
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False)
|
20 |
-
model_names = [name for name in manager.list_models() if name in MODELS_WITH_SEP_TESTS]
|
|
|
21 |
for model_name in model_names[offset::step]:
|
22 |
print(f"\n > Run - {model_name}")
|
23 |
model_path, _, _ = manager.download_model(model_name)
|
@@ -67,23 +75,85 @@ def run_models(offset=0, step=1):
|
|
67 |
|
68 |
|
69 |
def test_xtts():
|
|
|
70 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
71 |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
def test_bark():
|
81 |
"""Bark is too big to run on github actions. We need to test it locally"""
|
82 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
def test_voice_conversion():
|
|
|
3 |
import os
|
4 |
import shutil
|
5 |
|
6 |
+
import torch
|
7 |
+
|
8 |
from tests import get_tests_data_path, get_tests_output_path, run_cli
|
9 |
from TTS.tts.utils.languages import LanguageManager
|
10 |
from TTS.tts.utils.speakers import SpeakerManager
|
11 |
from TTS.utils.generic_utils import get_user_data_dir
|
12 |
from TTS.utils.manage import ModelManager
|
13 |
|
14 |
+
MODELS_WITH_SEP_TESTS = [
|
15 |
+
"tts_models/multilingual/multi-dataset/bark",
|
16 |
+
"tts_models/en/multi-dataset/tortoise-v2",
|
17 |
+
"tts_models/multilingual/multi-dataset/xtts_v1",
|
18 |
+
"tts_models/multilingual/multi-dataset/xtts_v1.1",
|
19 |
+
]
|
20 |
|
21 |
|
22 |
def run_models(offset=0, step=1):
|
|
|
24 |
print(" > Run synthesizer with all the models.")
|
25 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
26 |
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False)
|
27 |
+
model_names = [name for name in manager.list_models() if name not in MODELS_WITH_SEP_TESTS]
|
28 |
+
print("Model names:", model_names)
|
29 |
for model_name in model_names[offset::step]:
|
30 |
print(f"\n > Run - {model_name}")
|
31 |
model_path, _, _ = manager.download_model(model_name)
|
|
|
75 |
|
76 |
|
77 |
def test_xtts():
|
78 |
+
"""XTTS is too big to run on github actions. We need to test it locally"""
|
79 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
80 |
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
|
81 |
+
use_gpu = torch.cuda.is_available()
|
82 |
+
if use_gpu:
|
83 |
+
run_cli(
|
84 |
+
"yes | "
|
85 |
+
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 "
|
86 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True '
|
87 |
+
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
run_cli(
|
91 |
+
"yes | "
|
92 |
+
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 "
|
93 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False '
|
94 |
+
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def test_xtts_streaming():
|
99 |
+
"""Testing the new inference_stream method"""
|
100 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
101 |
+
from TTS.tts.models.xtts import Xtts
|
102 |
+
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
|
103 |
+
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v1")
|
104 |
+
config = XttsConfig()
|
105 |
+
config.load_json(os.path.join(model_path, "config.json"))
|
106 |
+
model = Xtts.init_from_config(config)
|
107 |
+
model.load_checkpoint(config, checkpoint_dir=model_path)
|
108 |
+
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
109 |
+
|
110 |
+
print("Computing speaker latents...")
|
111 |
+
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav)
|
112 |
+
|
113 |
+
print("Inference...")
|
114 |
+
chunks = model.inference_stream(
|
115 |
+
"It took me quite a long time to develop a voice and now that I have it I am not going to be silent.",
|
116 |
+
"en",
|
117 |
+
gpt_cond_latent,
|
118 |
+
speaker_embedding
|
119 |
)
|
120 |
+
wav_chuncks = []
|
121 |
+
for i, chunk in enumerate(chunks):
|
122 |
+
if i == 0:
|
123 |
+
assert chunk.shape[-1] > 5000
|
124 |
+
wav_chuncks.append(chunk)
|
125 |
+
assert len(wav_chuncks) > 1
|
126 |
+
|
127 |
+
|
128 |
+
def test_tortoise():
|
129 |
+
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
130 |
+
use_gpu = torch.cuda.is_available()
|
131 |
+
if use_gpu:
|
132 |
+
run_cli(
|
133 |
+
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 "
|
134 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True'
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
run_cli(
|
138 |
+
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 "
|
139 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False'
|
140 |
+
)
|
141 |
|
142 |
|
143 |
def test_bark():
|
144 |
"""Bark is too big to run on github actions. We need to test it locally"""
|
145 |
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
146 |
+
use_gpu = torch.cuda.is_available()
|
147 |
+
if use_gpu:
|
148 |
+
run_cli(
|
149 |
+
f" tts --model_name tts_models/multilingual/multi-dataset/bark "
|
150 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True'
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
run_cli(
|
154 |
+
f" tts --model_name tts_models/multilingual/multi-dataset/bark "
|
155 |
+
f'--text "This is an example." --out_path "{output_path}" --progress_bar False'
|
156 |
+
)
|
157 |
|
158 |
|
159 |
def test_voice_conversion():
|