Spaces:
Sleeping
Sleeping
Vivek-tiwari
commited on
Create streaming.py
Browse files- streaming.py +64 -0
streaming.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
|
2 |
+
from transformers.agents import ReactAgent
|
3 |
+
|
4 |
+
|
5 |
+
def pull_message(step_log: dict):
|
6 |
+
try:
|
7 |
+
from gradio import ChatMessage
|
8 |
+
except ImportError:
|
9 |
+
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
|
10 |
+
|
11 |
+
if step_log.get("rationale"):
|
12 |
+
yield ChatMessage(role="assistant", content=step_log["rationale"])
|
13 |
+
if step_log.get("tool_call"):
|
14 |
+
used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
|
15 |
+
content = step_log["tool_call"]["tool_arguments"]
|
16 |
+
if used_code:
|
17 |
+
content = f"```py\n{content}\n```"
|
18 |
+
yield ChatMessage(
|
19 |
+
role="assistant",
|
20 |
+
metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"},
|
21 |
+
content=content,
|
22 |
+
)
|
23 |
+
if step_log.get("observation"):
|
24 |
+
yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
|
25 |
+
if step_log.get("error"):
|
26 |
+
yield ChatMessage(
|
27 |
+
role="assistant",
|
28 |
+
content=str(step_log["error"]),
|
29 |
+
metadata={"title": "💥 Error"},
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
|
34 |
+
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
35 |
+
|
36 |
+
try:
|
37 |
+
from gradio import ChatMessage
|
38 |
+
except ImportError:
|
39 |
+
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
|
40 |
+
|
41 |
+
class Output:
|
42 |
+
output: AgentType | str = None
|
43 |
+
|
44 |
+
for step_log in agent.run(task, stream=True, **kwargs):
|
45 |
+
if isinstance(step_log, dict):
|
46 |
+
for message in pull_message(step_log):
|
47 |
+
print("message", message)
|
48 |
+
yield message
|
49 |
+
|
50 |
+
Output.output = step_log
|
51 |
+
if isinstance(Output.output, AgentText):
|
52 |
+
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```")
|
53 |
+
elif isinstance(Output.output, AgentImage):
|
54 |
+
yield ChatMessage(
|
55 |
+
role="assistant",
|
56 |
+
content={"path": Output.output.to_string(), "mime_type": "image/png"},
|
57 |
+
)
|
58 |
+
elif isinstance(Output.output, AgentAudio):
|
59 |
+
yield ChatMessage(
|
60 |
+
role="assistant",
|
61 |
+
content={"path": Output.output.to_string(), "mime_type": "audio/wav"},
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
yield ChatMessage(role="assistant", content=Output.output)
|