VitalyVorobyev commited on
Commit
b2a84cb
·
1 Parent(s): b4d1348

superpoint refactored

Browse files
backend/py/app/inference/dl_adapters/__init__.py CHANGED
@@ -5,7 +5,7 @@ import os
5
  from .base import AdapterContext, DLAdapter
6
  from .dexined import DexiNedAdapter
7
  from .edges import EdgesAdapter
8
- from .superpoint import SuperPointAdapter
9
 
10
 
11
  def get_adapter(model_path: str, detector: str) -> DLAdapter:
@@ -13,7 +13,7 @@ def get_adapter(model_path: str, detector: str) -> DLAdapter:
13
  if "dexined" in name:
14
  return DexiNedAdapter()
15
  if "superpoint" in name or (detector.startswith("Corners") and "super" in name):
16
- return SuperPointAdapter()
17
  if any(k in name for k in ("hed",)) or detector.startswith("Edges"):
18
  return EdgesAdapter()
19
  return EdgesAdapter()
@@ -25,5 +25,6 @@ __all__ = [
25
  "DexiNedAdapter",
26
  "EdgesAdapter",
27
  "SuperPointAdapter",
 
28
  "get_adapter",
29
  ]
 
5
  from .base import AdapterContext, DLAdapter
6
  from .dexined import DexiNedAdapter
7
  from .edges import EdgesAdapter
8
+ from .superpoint import SuperPointAdapter, SuperPointTransformersAdapter
9
 
10
 
11
  def get_adapter(model_path: str, detector: str) -> DLAdapter:
 
13
  if "dexined" in name:
14
  return DexiNedAdapter()
15
  if "superpoint" in name or (detector.startswith("Corners") and "super" in name):
16
+ return SuperPointTransformersAdapter()
17
  if any(k in name for k in ("hed",)) or detector.startswith("Edges"):
18
  return EdgesAdapter()
19
  return EdgesAdapter()
 
25
  "DexiNedAdapter",
26
  "EdgesAdapter",
27
  "SuperPointAdapter",
28
+ "SuperPointTransformersAdapter",
29
  "get_adapter",
30
  ]
requirements.txt CHANGED
@@ -4,3 +4,5 @@ numpy>=1.26.0
4
  fastapi>=0.112.0
5
  uvicorn>=0.30.0
6
  python-multipart>=0.0.9
 
 
 
4
  fastapi>=0.112.0
5
  uvicorn>=0.30.0
6
  python-multipart>=0.0.9
7
+ transformers>=4.57.0
8
+ Pillow>=10.0.0
tests/test_superpoint_consistency.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from pathlib import Path
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import pytest
7
+
8
+ # Ensure project root is available on sys.path when tests run directly.
9
+ ROOT = Path(__file__).resolve().parents[1]
10
+ if str(ROOT) not in sys.path:
11
+ sys.path.insert(0, str(ROOT))
12
+
13
+ try:
14
+ import onnxruntime as ort # type: ignore
15
+ except ImportError: # pragma: no cover - dependency managed by test skip
16
+ ort = None # type: ignore
17
+
18
+ from backend.py.app.inference.dl_adapters.superpoint import (
19
+ SuperPointAdapter,
20
+ SuperPointTransformersAdapter,
21
+ )
22
+
23
+ try:
24
+ import torch
25
+ except ImportError: # pragma: no cover - dependency managed by test skips
26
+ torch = None # type: ignore
27
+
28
+
29
+ def _synthetic_corner_image(size: int = 256) -> np.ndarray:
30
+ img = np.zeros((size, size, 3), dtype=np.uint8)
31
+ cv2.rectangle(img, (size // 8, size // 8), (7 * size // 8, 7 * size // 8), (255, 255, 255), thickness=3)
32
+ cv2.line(img, (size // 8, size // 8), (7 * size // 8, 7 * size // 8), (255, 255, 255), thickness=2)
33
+ cv2.line(img, (size // 8, 7 * size // 8), (7 * size // 8, size // 8), (255, 255, 255), thickness=2)
34
+ cv2.circle(img, (size // 2, size // 2), size // 4, (255, 255, 255), thickness=2)
35
+ return img
36
+
37
+
38
+ def _normalized_heatmap(heat: np.ndarray) -> np.ndarray:
39
+ heat_min = float(np.min(heat))
40
+ heat_max = float(np.max(heat))
41
+ eps = 1e-8
42
+ return (heat - heat_min) / (heat_max - heat_min + eps)
43
+
44
+
45
+ @pytest.mark.skipif(ort is None, reason="onnxruntime is required for SuperPoint ONNX comparison")
46
+ @pytest.mark.xfail(
47
+ reason="Current superpoint.onnx export diverges from the transformers reference implementation",
48
+ strict=True,
49
+ )
50
+ def test_superpoint_onnx_matches_transformers_heatmap():
51
+ model_path = ROOT / "models" / "superpoint.onnx"
52
+ if not model_path.is_file():
53
+ pytest.skip("superpoint.onnx model not available in ./models directory")
54
+
55
+ try:
56
+ hf_adapter = SuperPointTransformersAdapter(device="cpu")
57
+ except ImportError as exc: # pragma: no cover - dependency checked by skip
58
+ pytest.skip(str(exc))
59
+ if torch is None: # pragma: no cover - dependency checked by skip
60
+ pytest.skip("PyTorch is required for the transformers comparison test")
61
+
62
+ sess = ort.InferenceSession(str(model_path), providers=["CPUExecutionProvider"])
63
+ onnx_adapter = SuperPointAdapter()
64
+
65
+ image = _synthetic_corner_image()
66
+
67
+ feed_onnx, ctx_onnx = onnx_adapter.preprocess(image, sess)
68
+ outputs_onnx = sess.run(None, feed_onnx)
69
+ semi_onnx, _ = onnx_adapter._pick_outputs(outputs_onnx)
70
+ heat_onnx = onnx_adapter._semi_to_heat(semi_onnx)
71
+ heat_onnx = cv2.resize(heat_onnx, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
72
+ heat_onnx = _normalized_heatmap(heat_onnx)
73
+
74
+ feed_hf, ctx_hf = hf_adapter.preprocess(image, None)
75
+ outputs_hf = hf_adapter._forward(feed_hf[hf_adapter._PIXEL_VALUES_KEY])
76
+ mask = outputs_hf.mask[0] if outputs_hf.mask is not None else torch.ones_like(outputs_hf.scores[0], dtype=torch.bool)
77
+ mask = mask.bool()
78
+ keypoints = outputs_hf.keypoints[0][mask]
79
+ scores = outputs_hf.scores[0][mask]
80
+
81
+ heat_hf = np.zeros_like(heat_onnx)
82
+ keypoints_np = keypoints.detach().cpu().numpy()
83
+ scores_np = scores.detach().cpu().numpy()
84
+ H, W = image.shape[:2]
85
+ for (x_rel, y_rel), score in zip(keypoints_np, scores_np):
86
+ x = int(round(float(np.clip(x_rel * (W - 1), 0, W - 1))))
87
+ y = int(round(float(np.clip(y_rel * (H - 1), 0, H - 1))))
88
+ heat_hf[y, x] = max(heat_hf[y, x], float(score))
89
+ heat_hf = _normalized_heatmap(heat_hf)
90
+
91
+ correlation = np.corrcoef(heat_onnx.flatten(), heat_hf.flatten())[0, 1]
92
+ mean_absolute_error = float(np.mean(np.abs(heat_onnx - heat_hf)))
93
+
94
+ _, meta_onnx = onnx_adapter.postprocess(outputs_onnx, image, ctx_onnx, "Corners (SuperPoint)")
95
+ _, meta_hf = hf_adapter.postprocess(outputs_hf, image, ctx_hf, "Corners (SuperPoint)")
96
+
97
+ assert correlation > 0.9
98
+ assert mean_absolute_error < 0.05
99
+ assert meta_onnx["num_corners"] == pytest.approx(meta_hf["num_keypoints"], rel=0.1, abs=10)
100
+ assert meta_onnx["heat_mean"] == pytest.approx(meta_hf["scores_mean"], rel=0.1, abs=1e-3)
101
+
102
+
103
+ @pytest.mark.skipif(torch is None, reason="PyTorch is required for the transformers adapter test")
104
+ def test_superpoint_transformers_adapter_infer_returns_overlay_and_meta():
105
+ try:
106
+ adapter = SuperPointTransformersAdapter(device="cpu")
107
+ except ImportError as exc: # pragma: no cover - dependency checked by skip
108
+ pytest.skip(str(exc))
109
+
110
+ image = _synthetic_corner_image()
111
+ overlay, meta = adapter.infer(image, detector="Corners (SuperPoint)")
112
+
113
+ assert overlay.shape == image.shape
114
+ assert overlay.dtype == np.uint8
115
+ assert meta["adapter"] == "superpoint_transformers"
116
+ assert meta["backend"] == "transformers"
117
+ assert isinstance(meta["num_keypoints"], int)
118
+ assert meta["descriptors_shape"] is None or meta["descriptors_shape"][1] == 256