LongVU / app.py
Vision-CAIR's picture
Update app.py
bc559f6 verified
raw
history blame
12.4 kB
import spaces
import os
import re
import traceback
import torch
import gradio as gr
import sys
import numpy as np
from longvu.builder import load_pretrained_model
from longvu.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
KeywordsStoppingCriteria,
process_images,
tokenizer_image_token,
)
from decord import cpu, VideoReader
from huggingface_hub import snapshot_download
title_markdown = """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1 >LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding</h1>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
<a href='https://vision-cair.github.io/LongVU/'><img src='https://img.shields.io/badge/Project-LongVU-blue'></a>
<a href='https://huggingface.co/Vision-CAIR/LongVU_Qwen2_7B'><img src='https://img.shields.io/badge/model-checkpoints-yellow'></a>
</div>
</div>
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
color: #9C276A
}
"""
plum_color = gr.themes.colors.Color(
name='plum',
c50='#F8E4EF',
c100='#E9D0DE',
c200='#DABCCD',
c300='#CBA8BC',
c400='#BC94AB',
c500='#AD809A',
c600='#9E6C89',
c700='#8F5878',
c800='#804467',
c900='#713056',
c950='#662647',
)
class Chat:
def __init__(self):
self.version = "qwen"
model_name = "cambrian_qwen"
model_path = snapshot_download("Vision-CAIR/LongVU_Qwen2_7B", repo_type="model")
+ device = "cuda"
self.tokenizer, self.model, self.processor, _ = load_pretrained_model(model_path, None, model_name, device=device)
self.model.eval()
def remove_after_last_dot(self, s):
last_dot_index = s.rfind('.')
if last_dot_index == -1:
return s
return s[:last_dot_index + 1]
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
# TODO: support multiple turns of conversation.
assert len(data) == 1
tensor, image_sizes, modal = data[0]
conv = conv_templates[self.version].copy()
if isinstance(message, str):
conv.append_message("user", DEFAULT_IMAGE_TOKEN + '\n' + message)
elif isinstance(message, list):
if DEFAULT_IMAGE_TOKEN not in message[0]['content']:
message[0]['content'] = DEFAULT_IMAGE_TOKEN + '\n' + message[0]['content']
for mes in message:
conv.append_message(mes["role"], mes["content"])
conv.append_message("assistant", None)
prompt = conv.get_prompt()
input_ids = (
tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(self.model.device)
)
if "llama3" in self.version:
input_ids = input_ids[0][1:].unsqueeze(0) # remove bos
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images=tensor,
image_sizes=image_sizes,
do_sample=True,
temperature=temperature,
max_new_tokens=max_output_tokens,
use_cache=True,
top_p=top_p,
stopping_criteria=[stopping_criteria],
)
pred = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return self.remove_after_last_dot(pred)
@spaces.GPU(duration=120)
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
if textbox_in is None:
raise gr.Error("Chat messages cannot be empty")
return (
gr.update(value=image, interactive=True),
gr.update(value=video, interactive=True),
message,
chatbot,
None,
)
data = []
processor = handler.processor
try:
if image is not None:
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), None, '<image>'))
elif video is not None:
vr = VideoReader(video, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
frame_indices = np.array(
[
i
for i in range(
0,
len(vr),
round(fps),
)
]
)
video_tensor = []
for frame_index in frame_indices:
img = vr[frame_index].asnumpy()
video_tensor.append(img)
video_tensor = np.stack(video_tensor)
image_sizes = [video_tensor[0].shape[:2]]
video_tensor = process_images(video_tensor, processor, handler.model.config)
video_tensor = [item.unsqueeze(0).to(handler.model.device, dtype=dtype) for item in video_tensor]
data.append((video_tensor, image_sizes, '<video>'))
elif image is None and video is None:
data.append((None, None, '<text>'))
else:
raise NotImplementedError("Not support image and video at the same time")
except Exception as e:
traceback.print_exc()
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot, None
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
show_images = ""
if image is not None:
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
if video is not None:
show_images += f'<video controls playsinline width="300" style="display: inline-block;" src="./file={video}"></video>'
one_turn_chat = [textbox_in, None]
# 1. first run case
if len(chatbot) == 0:
one_turn_chat[0] += "\n" + show_images
# 2. not first run case
else:
# scanning the last image or video
length = len(chatbot)
for i in range(length - 1, -1, -1):
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[i][0])
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[i][0])
if len(previous_image) > 0:
previous_image = previous_image[-1]
# 2.1 new image append or pure text input will start a new conversation
if (video is not None) or (image is not None and os.path.basename(previous_image) != os.path.basename(image)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
elif len(previous_video) > 0:
previous_video = previous_video[-1]
# 2.2 new video append or pure text input will start a new conversation
if image is not None or (video is not None and os.path.basename(previous_video) != os.path.basename(video)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
message.append({'role': 'user', 'content': textbox_in})
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
message.append({'role': 'assistant', 'content': text_en_out})
one_turn_chat[1] = text_en_out
chatbot.append(one_turn_chat)
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot, None
def regenerate(message, chatbot):
message.pop(-1), message.pop(-1)
chatbot.pop(-1)
return message, chatbot
def clear_history(message, chatbot):
message.clear(), chatbot.clear()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
message, chatbot,
gr.update(value=None, interactive=True))
handler = Chat()
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
with gr.Blocks(title='LongVU', theme=theme, css=block_css) as demo:
gr.Markdown(title_markdown)
message = gr.State([])
with gr.Row():
with gr.Column(scale=3):
image = gr.State(None)
video = gr.Video(label="Input Video")
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=64,
maximum=512,
value=128,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="LongVU", bubble_full_width=True, height=420)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=True)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=True)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=True)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=True)
with gr.Row():
with gr.Column():
gr.Examples(
examples=[
[
f"./examples/video3.mp4",
"What is the moving direction of the yellow ball?",
],
[
f"./examples/video1.mp4",
"Describe this video in detail.",
],
[
f"./examples/video2.mp4",
"What is the name of the store?",
],
],
inputs=[video, textbox],
)
submit_btn.click(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot, textbox])
textbox.submit(
generate,
[
image,
video,
message,
chatbot,
textbox,
temperature,
top_p,
max_output_tokens,
],
[image, video, message, chatbot, textbox],
)
regenerate_btn.click(
regenerate,
[message, chatbot],
[message, chatbot]).then(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot])
clear_btn.click(
clear_history,
[message, chatbot],
[image, video, message, chatbot, textbox])
demo.launch()