Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,90 +14,90 @@ import time
|
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if not groq_api_key or not google_api_key:
|
21 |
-
st.error("API keys are missing. Please check your environment variables.")
|
22 |
-
st.stop()
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
|
|
26 |
st.title("Legal Assistant")
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
31 |
prompt = ChatPromptTemplate.from_template(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
)
|
41 |
|
42 |
-
@st.cache_resource
|
43 |
def vector_embedding():
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.
|
50 |
-
st.
|
51 |
-
|
52 |
-
docs = loader.load()
|
53 |
-
if not docs:
|
54 |
-
st.error("No PDF files found in the './new' directory.")
|
55 |
-
st.stop()
|
56 |
-
|
57 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
58 |
-
final_documents = text_splitter.split_documents(docs[:20])
|
59 |
-
vectors = FAISS.from_documents(final_documents, embeddings)
|
60 |
-
return vectors
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
#
|
65 |
-
if "chat_history" not in st.session_state:
|
66 |
-
st.session_state.chat_history = []
|
67 |
-
|
68 |
-
# Sidebar for chat history
|
69 |
-
with st.sidebar:
|
70 |
-
st.title("Chat History")
|
71 |
-
for idx, chat in enumerate(st.session_state.chat_history):
|
72 |
-
# Create a button for each question
|
73 |
-
if st.button(f"Q{idx+1}: {chat['question']}"):
|
74 |
-
# When the button is clicked, display the corresponding answer below the question
|
75 |
-
st.session_state.selected_answer = chat['answer']
|
76 |
-
st.session_state.selected_question = chat['question']
|
77 |
-
|
78 |
-
# Show selected chat history question and answer
|
79 |
-
if 'selected_answer' in st.session_state:
|
80 |
-
st.write(f"**Q:** {st.session_state.selected_question}")
|
81 |
-
st.write(f"**A:** {st.session_state.selected_answer}")
|
82 |
-
else:
|
83 |
-
st.write("No question selected from chat history yet.")
|
84 |
-
|
85 |
-
# User input for new question
|
86 |
prompt1 = st.text_input("Enter Your Question From Documents")
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
if prompt1:
|
89 |
-
|
|
|
90 |
document_chain = create_stuff_documents_chain(llm, prompt)
|
91 |
retriever = st.session_state.vectors.as_retriever()
|
92 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
93 |
|
|
|
94 |
start = time.process_time()
|
95 |
response = retrieval_chain.invoke({'input': prompt1})
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
st.
|
100 |
-
st.write(answer)
|
101 |
|
102 |
-
#
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
17 |
+
# Set page configuration
|
18 |
+
st.set_page_config(page_title="Legal Assistant", layout="wide")
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Initialize session state for chat history if not exists
|
21 |
+
if 'chat_history' not in st.session_state:
|
22 |
+
st.session_state.chat_history = []
|
23 |
|
24 |
+
# Title
|
25 |
st.title("Legal Assistant")
|
26 |
|
27 |
+
# Sidebar setup
|
28 |
+
st.sidebar.title("Chat History")
|
29 |
+
|
30 |
+
# API Key Configuration
|
31 |
+
groq_api_key = os.getenv('groqapi')
|
32 |
+
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
33 |
|
34 |
+
# LLM and Prompt Setup
|
35 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
|
36 |
prompt = ChatPromptTemplate.from_template(
|
37 |
+
"""
|
38 |
+
Answer the questions based on the provided context only.
|
39 |
+
Please provide the most accurate response based on the question
|
40 |
+
<context>
|
41 |
+
{context}
|
42 |
+
<context>
|
43 |
+
Questions:{input}
|
44 |
+
"""
|
45 |
)
|
46 |
|
|
|
47 |
def vector_embedding():
|
48 |
+
"""Perform vector embedding of documents"""
|
49 |
+
if "vectors" not in st.session_state:
|
50 |
+
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
51 |
+
st.session_state.loader = PyPDFDirectoryLoader("./new") # Data Ingestion
|
52 |
+
st.session_state.docs = st.session_state.loader.load() # Document Loading
|
53 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|
54 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) # splitting
|
55 |
+
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Perform vector embedding
|
58 |
+
vector_embedding()
|
59 |
|
60 |
+
# Main input area
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
prompt1 = st.text_input("Enter Your Question From Documents")
|
62 |
|
63 |
+
# Function to add to chat history
|
64 |
+
def add_to_chat_history(question, answer):
|
65 |
+
st.session_state.chat_history.append({
|
66 |
+
'question': question,
|
67 |
+
'answer': answer
|
68 |
+
})
|
69 |
+
|
70 |
+
# Process question and generate response
|
71 |
if prompt1:
|
72 |
+
try:
|
73 |
+
# Create document and retrieval chains
|
74 |
document_chain = create_stuff_documents_chain(llm, prompt)
|
75 |
retriever = st.session_state.vectors.as_retriever()
|
76 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
77 |
|
78 |
+
# Generate response
|
79 |
start = time.process_time()
|
80 |
response = retrieval_chain.invoke({'input': prompt1})
|
81 |
+
response_time = time.process_time() - start
|
82 |
|
83 |
+
# Display response
|
84 |
+
st.write(response['answer'])
|
|
|
85 |
|
86 |
+
# Add to chat history
|
87 |
+
add_to_chat_history(prompt1, response['answer'])
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"An error occurred: {e}")
|
91 |
+
|
92 |
+
# Sidebar content
|
93 |
+
# Clear chat history button
|
94 |
+
if st.sidebar.button("Clear Chat History"):
|
95 |
+
st.session_state.chat_history = []
|
96 |
+
|
97 |
+
# Display chat history
|
98 |
+
st.sidebar.write("### Previous Questions")
|
99 |
+
for idx, chat in enumerate(reversed(st.session_state.chat_history), 1):
|
100 |
+
# Create a button for each previous question
|
101 |
+
if st.sidebar.button(f"Question {len(st.session_state.chat_history) - idx + 1}: {chat['question']}"):
|
102 |
+
# Display the corresponding answer when the button is clicked
|
103 |
+
st.sidebar.write(f"**Answer:** {chat['answer']}")
|