Meta_mms_ASR / asr.py
Vishnu-add's picture
Upload 36 files
334d55e
raw
history blame
3.09 kB
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import time
import gradio as gr
import librosa
import numpy as np
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
model_id_lid = "facebook/mms-lid-126"
processor_lid = AutoFeatureExtractor.from_pretrained(model_id_lid)
model_lid = Wav2Vec2ForSequenceClassification.from_pretrained(model_id_lid)
def resample_to_16k(audio, orig_sr):
y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000)
return y_resampled
def transcribe(audio):
print(audio)
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
# print("After loading: ",audio)
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
with torch.no_grad():
tr_start_time = time.time()
outputs = model(**inputs).logits
tr_end_time = time.time()
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription,(tr_end_time-tr_start_time)
def detect_language(audio):
print(audio)
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
# print(audio)
# inputs_lid = processor_lid(audio, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
start_time = time.time()
outputs_lid = model_lid(**inputs).logits
end_time = time.time()
# print(end_time-start_time," sec")
lang_id = torch.argmax(outputs_lid, dim=-1)[0].item()
detected_lang = model_lid.config.id2label[lang_id]
print(detected_lang)
return detected_lang, (end_time-start_time)
def transcribe_lang(audio,lang):
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
processor.tokenizer.set_target_lang(lang)
model.load_adapter(lang)
print(lang)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
with torch.no_grad():
tr_start_time = time.time()
outputs = model(**inputs).logits
tr_end_time = time.time()
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription,(tr_end_time-tr_start_time)