Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
model_checkpoint = "MuntasirHossain/RoBERTa-base-finetuned-emotion" | |
emotion_model = pipeline("text-classification", model=model_checkpoint) | |
def classify_emotion(text): | |
label = emotion_model(text)[0]["label"] | |
return label | |
description = "This AI model is trained to classify texts expressing human emotion into different categories." | |
title = "Texts Expressing Emotion" | |
examples = [["He is very happy today", "Free Palestine"]] | |
theme = { | |
"container": { | |
"background-color": "#007bff", | |
"color": "#fff", | |
"padding": "20px", | |
}, | |
"textbox": { | |
"background-color": "#fff", | |
"border-radius": "5px", | |
"padding": "10px", | |
"margin-bottom": "10px", | |
}, | |
"button": { | |
"background-color": "#007bff", | |
"color": "#fff", | |
"padding": "10px", | |
"border-radius": "5px", | |
"cursor": "pointer", | |
}, | |
"label": { | |
"color": "#fff", | |
}, | |
} | |
gr.Interface( | |
fn=classify_emotion, | |
inputs="textbox", | |
outputs="text", | |
title=title, | |
theme=theme, | |
description=description, | |
examples=examples, | |
).launch() | |