VishalMysore commited on
Commit
adbd551
Β·
verified Β·
1 Parent(s): eda52d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -3
app.py CHANGED
@@ -138,11 +138,77 @@ def evaluate(example, treshold):
138
  average_score_truth = "{:.0%}".format(average_score_truth)
139
  return average_score_predicted, predictions, labels, average_score_truth
140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
  with gr.Blocks(theme=style) as demo:
142
  with gr.Tab("Maya"):
143
  gr.Markdown(title)
144
  gr.Markdown(description)
145
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  with gr.Tab("Mithya"):
147
  gr.Markdown(title)
148
  gr.Markdown(description)
@@ -177,8 +243,15 @@ with gr.Blocks(theme=style) as demo:
177
  examples_dropdown.input(mirror, inputs=examples_dropdown, outputs=example_text)
178
  submit.click(evaluate, inputs=[examples_dropdown, treshold], outputs=[label, highlighted_prediction, highlighted_ground_truth, label_ground_truth])
179
  with gr.Tab("Router-Chain-Branch"):
180
- gr.Markdown(title)
181
- gr.Markdown(description)
 
 
 
 
 
 
 
182
 
183
  theme=gr.themes.Base()
184
  demo.launch(debug=True)
 
138
  average_score_truth = "{:.0%}".format(average_score_truth)
139
  return average_score_predicted, predictions, labels, average_score_truth
140
 
141
+ from google.colab import userdata
142
+ OPENAI_API_KEY=userdata.get("OPENAI_API_KEY")
143
+ os.environ["OPENAI_API_KEY"]=str(OPENAI_API_KEY)
144
+ def read_html_file(file_path):
145
+ try:
146
+ with open(file_path, 'r', encoding='utf-8') as file:
147
+ html_content = file.read()
148
+ html_content = html_content.encode('ascii', 'ignore').decode('ascii')
149
+ html_content= html_content.replace("\n","")
150
+ html_content=re.sub( ">\s+<", "><" , html_content)
151
+ return html_content
152
+ except FileNotFoundError:
153
+ print(f"File not found: {file_path}")
154
+ return None
155
+ except Exception as e:
156
+ print(f"An error occurred: {str(e)}")
157
+ return None
158
+ def createQuestions(documents):
159
+ questions = mqag_model.generate(context=document, do_sample=True, num_questions=3)
160
+
161
+ return questions
162
+ def detect(context, summary):
163
+ score = mqag_model.score(candidate=summary, reference=context, num_questions=3, verbose=True)
164
+ return score
165
+
166
+ def summarize(document):
167
+ response = client.chat.completions.create(
168
+ model="gpt-3.5-turbo",
169
+ messages=[
170
+ {
171
+ "role": "system",
172
+ "content": "Summarize content you are provided with for a second-grade student."
173
+ },
174
+ {
175
+ "role": "user",
176
+ "content":document
177
+ }
178
+ ],
179
+ temperature=0.7,
180
+ max_tokens=64,
181
+ top_p=1
182
+ )
183
+ return response.choices[0].message.content
184
+ def detectRag(document,rags):
185
+ options = sorted([word.capitalize() for word in rags.split(",")])
186
+ print(options)
187
+ questions = [{'question': "what is the main topic of this?", 'options': options}]
188
+ probs = mqag_model.answer(questions=questions, context=document)
189
+ print(probs[0])
190
+ return probs[0]
191
+ html_content = read_html_file("cookgpt.html")
192
  with gr.Blocks(theme=style) as demo:
193
  with gr.Tab("Maya"):
194
  gr.Markdown(title)
195
  gr.Markdown(description)
196
+ with gr.Row():
197
+ with gr.Column():
198
+ context = gr.TextArea(label="Context" , value=document)
199
+ questions = gr.TextArea(label="Questions")
200
+ createQuestiobBTN = gr.Button("Create Questions")
201
+ createQuestiobBTN.click(createQuestions, inputs=context, outputs=questions)
202
+
203
+ with gr.Row():
204
+ with gr.Column():
205
+ summaryTx = gr.TextArea(label="Summary" , value=summary)
206
+ createSummaryBTN = gr.Button("Create Summary")
207
+ createSummaryBTN.click(summarize, inputs=context, outputs=summaryTx)
208
+ score = gr.TextArea(label="Score")
209
+ detectHallucinate = gr.Button("Detect Hallucination")
210
+ detectHallucinate.click(detect, inputs=[context,summaryTx], outputs=score)
211
+ gr.HTML(html_content)
212
  with gr.Tab("Mithya"):
213
  gr.Markdown(title)
214
  gr.Markdown(description)
 
243
  examples_dropdown.input(mirror, inputs=examples_dropdown, outputs=example_text)
244
  submit.click(evaluate, inputs=[examples_dropdown, treshold], outputs=[label, highlighted_prediction, highlighted_ground_truth, label_ground_truth])
245
  with gr.Tab("Router-Chain-Branch"):
246
+ gr.Markdown(titleRAG)
247
+ gr.Markdown(descriptionRAG)
248
+ with gr.Row():
249
+ with gr.Column():
250
+ contextRAG = gr.TextArea(label="Context" , value=document)
251
+ ragDocuments = gr.TextArea(label="Comma Seperated RAG" , value="paneer,chicken,breakfast")
252
+ findRAGDocument = gr.Button("Detect Document")
253
+ rag = gr.TextArea(label="Rag Document to Look for")
254
+ findRAGDocument.click(detectRag, inputs=[contextRAG,ragDocuments], outputs=rag)
255
 
256
  theme=gr.themes.Base()
257
  demo.launch(debug=True)