VishalD1234 commited on
Commit
a616242
·
verified ·
1 Parent(s): 1aff23e

Create app2.py

Browse files
Files changed (1) hide show
  1. app2.py +144 -0
app2.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import io
3
+ import numpy as np
4
+ import torch
5
+ from decord import cpu, VideoReader, bridge
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from transformers import BitsAndBytesConfig
8
+ import json
9
+
10
+ MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
11
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
12
+ TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
13
+
14
+ DELAY_REASONS = {
15
+ "step1": {"reasons": ["Delay in Bead Insertion","Lack of raw material"]},
16
+ "step2": {"reasons": ["Inner Liner Adjustment by Technician","Person rebuilding defective Tire Sections"]},
17
+ "step3": {"reasons": ["Manual Adjustment in Ply1 apply","Technician repairing defective Tire Sections"]},
18
+ "step4": {"reasons": ["Delay in Bead set","Lack of raw material"]},
19
+ "step5": {"reasons": ["Delay in Turnup","Lack of raw material"]},
20
+ "step6": {"reasons": ["Person Repairing sidewall","Person rebuilding defective Tire Sections"]},
21
+ "step7": {"reasons": ["Delay in sidewall stitching","Lack of raw material"]},
22
+ "step8": {"reasons": ["No person available to load Carcass","No person available to collect tire"]}
23
+ }
24
+
25
+ with open('delay_reasons.json', 'w') as f:
26
+ json.dump(DELAY_REASONS, f, indent=4)
27
+
28
+ def load_video(video_data, strategy='chat'):
29
+ bridge.set_bridge('torch')
30
+ mp4_stream = video_data
31
+ num_frames = 24
32
+ decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
33
+ frame_id_list = []
34
+ total_frames = len(decord_vr)
35
+ timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
36
+ max_second = round(max(timestamps)) + 1
37
+
38
+ for second in range(max_second):
39
+ closest_num = min(timestamps, key=lambda x: abs(x - second))
40
+ index = timestamps.index(closest_num)
41
+ frame_id_list.append(index)
42
+ if len(frame_id_list) >= num_frames:
43
+ break
44
+
45
+ video_data = decord_vr.get_batch(frame_id_list)
46
+ video_data = video_data.permute(3, 0, 1, 2)
47
+ return video_data
48
+
49
+ def load_model():
50
+ quantization_config = BitsAndBytesConfig(
51
+ load_in_4bit=True,
52
+ bnb_4bit_compute_dtype=TORCH_TYPE,
53
+ bnb_4bit_use_double_quant=True,
54
+ bnb_4bit_quant_type="nf4"
55
+ )
56
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ MODEL_PATH,
59
+ torch_dtype=TORCH_TYPE,
60
+ trust_remote_code=True,
61
+ quantization_config=quantization_config,
62
+ device_map="auto"
63
+ ).eval()
64
+ return model, tokenizer
65
+
66
+ def predict(prompt, video_data, temperature, model, tokenizer):
67
+ strategy = 'chat'
68
+ video = load_video(video_data, strategy=strategy)
69
+ history = []
70
+ inputs = model.build_conversation_input_ids(
71
+ tokenizer=tokenizer,
72
+ query=prompt,
73
+ images=[video],
74
+ history=history,
75
+ template_version=strategy
76
+ )
77
+ inputs = {
78
+ 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
79
+ 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
80
+ 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
81
+ 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
82
+ }
83
+ gen_kwargs = {
84
+ "max_new_tokens": 2048,
85
+ "pad_token_id": 128002,
86
+ "top_k": 1,
87
+ "do_sample": False,
88
+ "top_p": 0.1,
89
+ "temperature": temperature,
90
+ }
91
+ with torch.no_grad():
92
+ outputs = model.generate(**inputs, **gen_kwargs)
93
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
94
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
95
+ return response
96
+
97
+ def get_base_prompt():
98
+ return """You are an expert AI model trained to analyze and interpret manufacturing processes.
99
+ The task is to evaluate video footage of specific steps in a tire manufacturing process.
100
+ The process has 8 total steps, but only delayed steps are provided for analysis.
101
+
102
+ **Your Goal:**
103
+ 1. Analyze the provided video.
104
+ 2. Identify possible reasons for the delay in the manufacturing step shown in the video.
105
+ 3. Provide a clear explanation of the delay based on observed factors.
106
+
107
+ **Context:**
108
+ Tire manufacturing involves 8 steps, and delays may occur due to machinery faults,
109
+ raw material availability, labor efficiency, or unexpected disruptions.
110
+
111
+ **Output:**
112
+ Explain why the delay occurred in this step. Include specific observations
113
+ and their connection to the delay."""
114
+
115
+ def inference(video, step_number, selected_reason):
116
+ if not video:
117
+ return "Please upload a video first."
118
+ model, tokenizer = load_model()
119
+ video_data = video.read()
120
+ base_prompt = get_base_prompt()
121
+ full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}"
122
+ temperature = 0.3
123
+ response = predict(full_prompt, video_data, temperature, model, tokenizer)
124
+ return response
125
+
126
+ with gr.Blocks() as demo:
127
+ with gr.Row():
128
+ with gr.Column():
129
+ video = gr.Video(label="Video Input", sources=["upload"])
130
+ step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1")
131
+ reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0])
132
+ analyze_btn = gr.Button("Analyze Delay", variant="primary")
133
+ with gr.Column():
134
+ output = gr.Textbox(label="Analysis Result")
135
+
136
+ def update_reasons(step):
137
+ step_num = step.lower().replace(" ", "")
138
+ return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"])
139
+
140
+ step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason])
141
+ analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output])
142
+
143
+ if __name__ == "__main__":
144
+ demo.queue().launch()