Spaces:
Sleeping
Sleeping
new
Browse files
model.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load pre-trained model for sentence embedding
|
6 |
+
model = SentenceTransformer('distilbert-base-nli-stsb-mean-tokens')
|
7 |
+
|
8 |
+
# Load scraped courses data
|
9 |
+
courses_df = pd.read_csv("courses_data.csv")
|
10 |
+
|
11 |
+
# Encode course descriptions
|
12 |
+
courses_df['embedding'] = courses_df['description'].apply(lambda x: model.encode(x, convert_to_tensor=True))
|
13 |
+
|
14 |
+
def search_courses(query, top_k=5):
|
15 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
16 |
+
cosine_scores = torch.nn.functional.cosine_similarity(query_embedding, torch.stack(courses_df['embedding'].tolist()))
|
17 |
+
top_results = torch.topk(cosine_scores, k=top_k)
|
18 |
+
|
19 |
+
results = []
|
20 |
+
for idx in top_results.indices:
|
21 |
+
course = courses_df.iloc[idx.item()]
|
22 |
+
results.append({
|
23 |
+
'title': course['title'],
|
24 |
+
'description': course['description'],
|
25 |
+
'curriculum': course['curriculum']
|
26 |
+
})
|
27 |
+
return results
|