Spaces:
Sleeping
Sleeping
#In-built libraries | |
import json | |
import tempfile | |
import traceback | |
from typing import Dict | |
#third-party libraries | |
import gradio as gr | |
from PIL import Image | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
def save_temp_image(image: Image.Image) -> str: | |
""" | |
Saves the given PIL Image object as a temporary PNG file. | |
Args: | |
image (Image.Image): The image to be saved. | |
Returns: | |
str: The file path of the saved temporary image. | |
""" | |
# Create a temp file WITHOUT extension | |
with tempfile.NamedTemporaryFile(suffix=".tmp", delete=False) as tmp_file: | |
# Save image as PNG regardless of original format | |
image.save(tmp_file.name, format="PNG") | |
return tmp_file.name | |
def id_extractor(image: Image.Image) -> Dict: | |
# default: Load the model on the available device(s) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" | |
) | |
# default processer | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": "Extract all the available key details from the image in JSON"}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
resp = output_text[-1].replace("```json", "").replace("```", "").strip() | |
return json.loads(resp) | |
# Define the Gradio interface for the ID extractor | |
id_interface = gr.Interface( | |
fn=id_extractor, | |
inputs=gr.Image(type="pil", label="Upload an image"), | |
outputs=gr.JSON(label="Extracted Details"), | |
title="Upload your ID", | |
description="Upload an image of a document. Key details will be extracted automatically." | |
) | |
# Launch the Gradio interface | |
id_interface.launch(mcp_server=True) |