Spaces:
Runtime error
Runtime error
Vishakaraj
commited on
Commit
β’
a312060
1
Parent(s):
c709b60
Save output results as json
Browse files
app.py
CHANGED
@@ -1,10 +1,5 @@
|
|
1 |
import os
|
2 |
-
# os.system("sudo apt-get update && sudo apt-get install -y git")
|
3 |
-
# os.system("sudo apt-get -y install pybind11-dev")
|
4 |
-
# os.system("git clone https://github.com/facebookresearch/detectron2.git")
|
5 |
-
# os.system("pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html")
|
6 |
os.system("cd detectron2 && pip install detectron2-0.6-cp310-cp310-linux_x86_64.whl")
|
7 |
-
# os.system("pip3 install torch torchvision torchaudio")
|
8 |
os.system("pip install deepspeed==0.7.0")
|
9 |
|
10 |
import site
|
@@ -12,10 +7,11 @@ from importlib import reload
|
|
12 |
reload(site)
|
13 |
|
14 |
from PIL import Image
|
|
|
15 |
import argparse
|
16 |
import sys
|
17 |
import numpy as np
|
18 |
-
import
|
19 |
import gradio as gr
|
20 |
|
21 |
from detectron2.config import get_cfg
|
@@ -80,11 +76,37 @@ def setup_cfg(args):
|
|
80 |
|
81 |
def predict(image_file):
|
82 |
image_array = np.array(image_file)[:, :, ::-1] # BGR
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
|
@@ -102,7 +124,7 @@ demo = gr.Interface(
|
|
102 |
title="Dense Captioning - GRiT",
|
103 |
fn=predict,
|
104 |
inputs=gr.Image(type='pil', label="Original Image"),
|
105 |
-
outputs=gr.Image(type="pil",label="Output Image"),
|
106 |
examples=["example_1.jpg", "example_2.jpg"],
|
107 |
)
|
108 |
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
os.system("cd detectron2 && pip install detectron2-0.6-cp310-cp310-linux_x86_64.whl")
|
|
|
3 |
os.system("pip install deepspeed==0.7.0")
|
4 |
|
5 |
import site
|
|
|
7 |
reload(site)
|
8 |
|
9 |
from PIL import Image
|
10 |
+
from io import BytesIO
|
11 |
import argparse
|
12 |
import sys
|
13 |
import numpy as np
|
14 |
+
import torch
|
15 |
import gradio as gr
|
16 |
|
17 |
from detectron2.config import get_cfg
|
|
|
76 |
|
77 |
def predict(image_file):
|
78 |
image_array = np.array(image_file)[:, :, ::-1] # BGR
|
79 |
+
predictions, visualized_output = dense_captioning_demo.run_on_image(image_array)
|
80 |
+
buffer = BytesIO()
|
81 |
+
visualized_output.fig.savefig(buffer, format='png')
|
82 |
+
buffer.seek(0)
|
83 |
+
detections = {}
|
84 |
+
predictions = predictions["instances"].to(torch.device("cpu"))
|
85 |
+
|
86 |
+
for box, description, score in zip(
|
87 |
+
predictions.pred_boxes,
|
88 |
+
predictions.pred_object_descriptions.data,
|
89 |
+
predictions.scores,
|
90 |
+
):
|
91 |
+
if description not in detections:
|
92 |
+
detections[description] = []
|
93 |
+
detections[description].append(
|
94 |
+
{
|
95 |
+
"xmin": float(box[0]),
|
96 |
+
"ymin": float(box[1]),
|
97 |
+
"xmax": float(box[2]),
|
98 |
+
"ymax": float(box[3]),
|
99 |
+
"score": float(score),
|
100 |
+
}
|
101 |
+
)
|
102 |
+
|
103 |
+
output = {
|
104 |
+
"dense_captioning_results": {
|
105 |
+
"detections": detections,
|
106 |
+
}
|
107 |
+
}
|
108 |
+
|
109 |
+
return Image.open(buffer), output
|
110 |
|
111 |
|
112 |
|
|
|
124 |
title="Dense Captioning - GRiT",
|
125 |
fn=predict,
|
126 |
inputs=gr.Image(type='pil', label="Original Image"),
|
127 |
+
outputs=[gr.Image(type="pil",label="Output Image"), "json"],
|
128 |
examples=["example_1.jpg", "example_2.jpg"],
|
129 |
)
|
130 |
|