Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| class ModelConfig: | |
| vocab_size: int | |
| hidden_size: int | |
| n_heads: int | |
| n_kv_heads: int | |
| n_kv_groups: int | |
| head_dim: int | |
| n_layers: int | |
| attention_bias: bool | |
| intermediate_size: int | |
| mlp_bias: bool | |
| eps: float | |
| dropout: float | |
| max_position_embeddings: int | |
| pre_norm: bool | |
| tie_weights: bool | |
| max_seq_len: int | |
| class RMSNorm(nn.Module): | |
| def __init__(self, config: ModelConfig): | |
| super().__init__() | |
| self.eps = config.eps | |
| self.weight = nn.Parameter(torch.ones(config.hidden_size)) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
| return (x / rms) * self.weight | |
| class RotaryEmbedding(nn.Module): | |
| def __init__(self, head_dim, max_position_embeddings=2048): | |
| super().__init__() | |
| inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim)) | |
| t = torch.arange(max_position_embeddings, dtype=torch.float32) | |
| freqs = torch.einsum("i,j->ij", t, inv_freq) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos", emb.cos()[None, None, :, :], persistent=False) | |
| self.register_buffer("sin", emb.sin()[None, None, :, :], persistent=False) | |
| def forward(self, seq_len: int, device: torch.device, dtype: torch.dtype): | |
| cos = self.cos[:, :, :seq_len, :].to(device=device, dtype=dtype) | |
| sin = self.sin[:, :, :seq_len, :].to(device=device, dtype=dtype) | |
| return cos, sin | |
| def apply_rotary(x, cos, sin): | |
| x1, x2 = x[..., ::2], x[..., 1::2] | |
| x_rot = torch.stack([-x2, x1], dim=-1).reshape_as(x) | |
| return (x * cos) + (x_rot * sin) | |
| class GroupedMultiQueryAttention(nn.Module): | |
| def __init__(self, config: ModelConfig): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.n_heads = config.n_heads | |
| self.n_kv_heads = config.n_kv_heads | |
| self.head_dim = config.head_dim | |
| self.attention_bias = config.attention_bias | |
| self.dropout = nn.Dropout(config.dropout) | |
| if self.n_heads * self.head_dim != self.hidden_size: | |
| raise ValueError("hidden_size must equal n_heads * head_dim") | |
| # derive n_kv_groups if None | |
| if config.n_kv_groups is None: | |
| if self.n_kv_heads == 0: | |
| raise ValueError("n_kv_heads must be > 0") | |
| self.n_kv_groups = self.n_heads // self.n_kv_heads | |
| if self.n_heads % self.n_kv_heads != 0: | |
| raise ValueError("n_heads must be divisible by n_kv_heads to derive groups") | |
| else: | |
| self.n_kv_groups = config.n_kv_groups | |
| if self.n_kv_heads * self.n_kv_groups != self.n_heads: | |
| raise ValueError("n_heads must equal n_kv_heads * n_kv_groups") | |
| self.q_proj = nn.Linear(self.hidden_size, self.n_heads * self.head_dim, bias=self.attention_bias) | |
| self.k_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias) | |
| self.v_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias) | |
| self.w_o = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
| self.rope = RotaryEmbedding(self.head_dim, config.max_position_embeddings) | |
| def forward(self, x): | |
| B, T, _ = x.shape | |
| device = x.device | |
| dtype = x.dtype | |
| q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) | |
| k = self.k_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) | |
| v = self.v_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) | |
| cos, sin = self.rope(T, device=device, dtype=dtype) | |
| q = apply_rotary(q, cos, sin) | |
| k = apply_rotary(k, cos, sin) | |
| if self.n_kv_groups != 1: | |
| k = k.repeat_interleave(self.n_kv_groups, dim=1) | |
| v = v.repeat_interleave(self.n_kv_groups, dim=1) | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) | |
| # causal mask | |
| mask = torch.triu(torch.full((T, T), float("-inf"), device=device, dtype=dtype), diagonal=1) | |
| scores = scores + mask.unsqueeze(0).unsqueeze(0) | |
| attn = torch.softmax(scores, dim=-1) | |
| attn = self.dropout(attn) | |
| out = torch.matmul(attn, v) | |
| out = out.transpose(1, 2).contiguous().view(B, T, self.hidden_size) | |
| return self.w_o(out) | |
| class SwiGLUFeedForward(nn.Module): | |
| def __init__(self, config: ModelConfig): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.dropout = nn.Dropout(config.dropout) | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size) | |
| self.act = nn.SiLU() | |
| def forward(self, x): | |
| x = self.act(self.gate_proj(x)) * self.up_proj(x) | |
| x = self.down_proj(self.dropout(x)) | |
| return x | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, config: ModelConfig): | |
| super().__init__() | |
| self.attention = GroupedMultiQueryAttention(config) | |
| self.feed_forward = SwiGLUFeedForward(config) | |
| self.attn_norm = RMSNorm(config) | |
| self.ffn_norm = RMSNorm(config) | |
| self.dropout = nn.Dropout(config.dropout) | |
| self.pre_norm = config.pre_norm | |
| def forward(self, x): | |
| if self.pre_norm: | |
| x = x + self.dropout(self.attention(self.attn_norm(x))) | |
| x = x + self.dropout(self.feed_forward(self.ffn_norm(x))) | |
| else: | |
| x = self.attn_norm(x + self.dropout(self.attention(x))) | |
| x = self.ffn_norm(x + self.dropout(self.feed_forward(x))) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__(self, config: ModelConfig): | |
| super().__init__() | |
| self.config = config | |
| self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size) | |
| self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)]) | |
| self.embedding_dropout = nn.Dropout(config.dropout) | |
| self.final_norm = RMSNorm(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| if config.tie_weights: | |
| self.lm_head.weight = self.token_embedding.weight | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(max(1, self.config.n_layers))) | |
| if module.bias is not None: | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, input_ids: torch.Tensor, targets: Optional[torch.Tensor] = None): | |
| x = self.token_embedding(input_ids) * math.sqrt(self.config.hidden_size) | |
| x = self.embedding_dropout(x) | |
| for block in self.blocks: | |
| x = block(x) | |
| x = self.final_norm(x) | |
| logits = self.lm_head(x) | |
| return logits | |
| def top_k_top_p_filtering(logits: torch.Tensor, top_k: int = 0, top_p: float = 0.0, filter_value: float = -float('Inf')) -> torch.Tensor: | |
| """ | |
| Filter a distribution of logits using top-k and/or nucleus (top-p) filtering. | |
| This is taken from common implementations (Hugging Face transformers style). | |
| Args: | |
| logits: logits distribution shape (batch, vocab) | |
| top_k: keep only top k tokens with highest probability (0 = no top-k) | |
| top_p: keep the top tokens with cumulative probability >= top_p (0.0 = no nucleus) | |
| filter_value: value to set for filtered logits | |
| Returns: | |
| filtered logits with the same shape | |
| """ | |
| top_k = max(top_k, 0) | |
| batch_size, vocab_size = logits.size() | |
| if top_k > 0: | |
| # Remove all tokens with a probability less than the top-k tokens | |
| top_k = min(max(top_k, 1), vocab_size) | |
| values_to_keep, _ = torch.topk(logits, top_k) | |
| min_values = values_to_keep[:, -1].unsqueeze(1).expand_as(logits) | |
| logits = torch.where(logits < min_values, torch.full_like(logits, filter_value), logits) | |
| if top_p > 0.0: | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) | |
| sorted_probs = F.softmax(sorted_logits, dim=-1) | |
| cumulative_probs = torch.cumsum(sorted_probs, dim=-1) | |
| # Remove tokens with cumulative probability above the threshold | |
| sorted_mask = cumulative_probs > top_p | |
| # Shift the mask right to keep at least one token | |
| sorted_mask[..., 1:] = sorted_mask[..., :-1].clone() | |
| sorted_mask[..., 0] = False | |
| indices_to_remove = sorted_mask.scatter(1, sorted_indices, sorted_mask) | |
| logits = logits.masked_fill(indices_to_remove, filter_value) | |
| return logits | |
| def generate( | |
| model: Transformer, | |
| input_ids: torch.LongTensor, | |
| max_new_tokens: int = 50, | |
| temperature: float = 1.0, | |
| top_k: int = 0, | |
| top_p: float = 0.0, | |
| do_sample: bool = True, | |
| eos_token_id: Optional[int] = None, | |
| pad_token_id: Optional[int] = None, | |
| device: Optional[torch.device] = None, | |
| ): | |
| """ | |
| Autoregressive generation helper for the model. This implementation does NOT use KV cache | |
| (the model defined in this file does not implement a cache), so generation is performed | |
| by repeatedly calling the model on the growing sequence. It supports temperature, | |
| top-k and nucleus (top-p) sampling, greedy decoding, and optional early stopping | |
| on an `eos_token_id`. | |
| Args: | |
| model: the Transformer instance | |
| input_ids: (batch, seq_len) input token ids | |
| max_new_tokens: number of tokens to generate | |
| temperature: sampling temperature (<=0 or do_sample=False => greedy) | |
| top_k: top-k filtering (0 disables) | |
| top_p: nucleus/top-p filtering (0.0 disables) | |
| do_sample: whether to sample (True) or do greedy decoding (False) | |
| eos_token_id: optional EOS id to stop generation for individual sequences | |
| pad_token_id: optional pad id to use for finished sequences | |
| device: optional torch.device to run on; if None uses model's device | |
| Returns: | |
| tensor of shape (batch, seq_len + generated) with generated tokens appended | |
| """ | |
| model.eval() | |
| if device is None: | |
| # try to infer device | |
| try: | |
| device = next(model.parameters()).device | |
| except StopIteration: | |
| device = torch.device('cpu') | |
| input_ids = input_ids.to(device) | |
| batch_size, seq_len = input_ids.shape | |
| generated = 0 | |
| unfinished = torch.ones(batch_size, dtype=torch.bool, device=device) | |
| for _ in range(max_new_tokens): | |
| logits = model(input_ids) | |
| # logits shape: (batch, seq_len_total, vocab) | |
| next_token_logits = logits[:, -1, :] | |
| if temperature <= 0 or not do_sample: | |
| # Greedy | |
| next_tokens = torch.argmax(next_token_logits, dim=-1) | |
| else: | |
| logits_proc = next_token_logits / max(temperature, 1e-8) | |
| logits_proc = top_k_top_p_filtering(logits_proc, top_k=top_k, top_p=top_p) | |
| probs = F.softmax(logits_proc, dim=-1) | |
| next_tokens = torch.multinomial(probs, num_samples=1).squeeze(-1) | |
| # If EOS is provided, update finished sequences and pad further tokens | |
| if eos_token_id is not None: | |
| is_eos = next_tokens.eq(eos_token_id) | |
| # sequences that have just finished | |
| just_finished = unfinished & is_eos | |
| unfinished = unfinished & (~is_eos) | |
| # For sequences already finished, append pad_token_id (if provided), otherwise keep EOS or sampled token | |
| if pad_token_id is not None and not unfinished.all(): | |
| finished_mask = ~unfinished | |
| if finished_mask.any(): | |
| next_tokens = next_tokens.masked_fill(finished_mask, pad_token_id) | |
| # append | |
| input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=1) | |
| generated += 1 | |
| if eos_token_id is not None and not unfinished.any(): | |
| break | |
| return input_ids | |
| def _smoke_test(): | |
| config = ModelConfig( | |
| vocab_size=128, | |
| hidden_size=64, | |
| n_heads=4, | |
| n_kv_heads=4, | |
| n_kv_groups=None, | |
| head_dim=16, | |
| n_layers=2, | |
| attention_bias=False, | |
| intermediate_size=256, | |
| mlp_bias=False, | |
| eps=1e-5, | |
| ) | |
| model = Transformer(config) | |
| model.eval() | |
| batch, seq_len = 2, 8 | |
| input_ids = torch.randint(0, config.vocab_size, (batch, seq_len)) | |
| logits, loss = model(input_ids, targets=input_ids) | |
| assert logits.shape == (batch, seq_len, config.vocab_size) | |
| assert loss.dim() == 0 | |
| print("Smoke test passed: logits shape", logits.shape, "loss", loss.detach().item()) | |
| if __name__ == "__main__": | |
| _smoke_test() | |